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1.   OBJECTIVE: 
 
The objective of the experimental part of this project was to investigate the use of distant 
entanglement between atoms for synchronizing clocks, even in the presence of random 
fluctuations of the intervening path-length.  The objective of the theoretical part of this 
project was to study the role of special and general relativity as well as decoherence in 
this process. 
 
 
2.  APPROACH: 
 
A key step in our approach was to establish a degenerate entanglement between two 
distant atoms, in a manner that is independent of the distance between the atoms, and no 
timing information is transmitted.  Each atom would then be excited by its local atomic 
clock, thus producing a non-degenerate entanglement.  Next, an interference between the 
co- and counter-rotating terms in the Hamiltonian, followed by a measurement induced 
collapse of the entanglement, would be used to teleport the wavelength of one clock to 
the other location, thereby realizing frequency locking.   Given an initial synchronization, 
frequency locking is of primary importance in keeping the clocks synchronized.  
 
In order to realize this protocol, it would necessary first to create two building blocks: a 
trapped atom quantum memory, and an ultra-bright source of entangled photon pairs.  
Each bit of the quantum memory would be realized by trapping a single atom in a dipole 
force field, co-located at the center of a high-finesse super-cavity.  This would be 
achieved by catching a group of atoms first in a magneto-optic trap, followed by a 
vertical launch as an atomic fountain, and capture of a single atom in a far-off-resonant 
trap (FORT). The entangled photon pairs would be realized by using optical parametric 
amplifiers (OPAs). 
 
In addition to the frequency locking, it would be useful to have a protocol for transmitting 
absolute timing signals, which can be achieved --- with an accuracy beyond the classical 
limit of shot-noise --- by using a frequency-entangled source of laser pulses.  The noise-
reduction factor is √N, where N is the number of frequencies entangled.   Non-linear 
processes involving frequency down-conversions would be used to produce a source of 
this nature.   
 
For the theoretical tasks, a relativistic formulation of quantum entanglement would be 
applied to the specific protocol for clock synchronization. Effects of both special and 
general relativity would be considered   Furthermore, the issue of how various sources of 
decoherence may affect the fidelity of entanglement generation and thereby the accuracy 
of the clock synchronization would be studied, first in the non-relativistic context, and 
then including relativity. 
 
 
3.  SUMMARY OF ACCOMPLISHMENTS: 
 
The work performed by the people suppported under this project has resulted in thirty 
eight journal publications, and many conference presentations.  Some of the most 
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important journal publications are included as attachments, and the content of these 
attached papers represent the primary body of this report.   In what follows, we 
present a summary of the key accomplishments under this project.   Details of these 
results can be found in the attached papers. 
 
3.1. Most Significant Theoretical Accomplishments 
 
1. A basic Lorentz invariant model for distant entanglement was constructed 
2. A concrete scheme was established for measuring the absolute phase of a field in real 

time using a thermal atomic beam, via making use of a novel photon-echo type 
process that eliminates the dephasing from the velocity spread. 

3. A protocol was developed for remote frequency locking via wave-length teleportation 
using the Bloch-Siegert Oscillation based phase mapping.  

4. A protocol was developed for transmitting absolute timing signals, which can be 
achieved --- with an accuracy beyond the classical limit of shot-noise --- by using a 
frequency-entangled source of laser pulses.  The noise-reduction factor is √N, where 
N is the number of frequencies entangled.   Non-linear processes involving frequency 
down-conversions could be used to produce a source of this nature. 

5. An explicit scheme was developed for generating the so-called Difference Beam 
(DB), for achieving the sub-shot-noise accuracy in transmitting timing signal using 
the protocol of item 4 above. 

6. The fundamental constraints on any protocol for clock synchronization using distant 
entanglement was established using a general framework 

7. A proof was developed, via a Lorentz-invariant analysis, that it is not possible to 
purify the so-called Preskill phase asynchronously.  

8. It was proven that the BSO is negligible if a two level system is excited by an off-
resonant Raman transition, and prominent BSO requires the use of direct RF 
excitation.  

9. A detailed theoretical mdoel was developed to show how the degree of entanglement 
between a pair of particles --- either massive or massless --- located in one reference 
frame and observed from another reference frame, depends on the relative boost 
between the frames.  

10. The model of item 9 was used to show how a measurement of the degree of 
entanglement may be used to deduce the relative speed between two frames, without 
direct measurement of velocities.  Such a deduction can be used to enhance the 
accuracy of clock synchronization as well 

 
3.2. Most Significant Experimental Accomplishments 
 
11. We have demonstrated a down-converter with a KTP crystal in a cavity, achieving a 

fidelity of about 68%. 
12. We have demonstrated a single-pass, broadband PPKTP crystal based down-

converter with a coincidence count of up to 50,000 per second, and a fidelity of more 
than 97%. 

13. We have realized a novel dual-pumped downconversion source that yields the highest 
flux of polarization-entangled photon pairs. We have detected a 795-nm pair flux of 
11000/s/mW of pump power at a 90% visibility level in quantum interference 
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measurements. This is the brightest (by at least an order of magnitude) source of 
entangled photon pairs to date, and is ideally suited for the clock synchronization 
protocol based on the Bloch-Siegert effect.  

14. We have demonstrated an extended phase-matched second-harmonic generation in 
PPKTP with an observed fundamental bandwidth of ~100 nm, centered at 1585 nm. 
This represents an important step toward realizing the coincident-frequency entangled 
state for use in the frequency-entanglement clock synchronization protocol.  

15. We have demonstrated a FORT that catches atoms at the top of an atomic fountain 
launched from a MOT. We have also demonstrated coupling between two cavities 
and an upside down atomic beam traveling through the cavities.  

16. We have observed the Bloch-Siegert Oscillation (BSO) using an atomic beam, as a 
spectral signature at twice the frequency of the one used to drive a Zeeman transition. 
In addition, we have demonstrated directly that the BSO is phaselocked with the 
driving frequency.  

17. We have demonstrated an ultrabright source of polarization-entangled photons.   The 
total output flux is entangled without spectral, spatial, or temporal filtering.   The 
novel configuration uses bi-directional pumping and collinear propagation.   The 795-
nm center wavelength is ideal for coupling to trapped Rb atoms. 

18. We have demonstrated extended phase matching in PPKTP with a  100 nm phase-
matching bandwidth for second harmonic generation.   This is to be  used for 
demonstrating coincident-frequency entanglement. 

19. We have demonstrated that by applying a DC field parallel to the oscillating field, it 
is possible to observe a BSO that is at the same frequency as the driving phase, and 
phase locked, without the 180 degree ambiguity that occurs for the BSO at twice the 
frequency.  Furthermore, we have shown that BSO may be readily observed in an 
atomic ensemble, even without any optical pumping for state preparation.  This is a 
critical results that paves the way for using dipole-blockaded clusters of rubidium 
atoms in Rydberg states for the clock synchronization protocol. 

20. We have demonstrated that by monitoring the transition rate, and the first and second 
harmonics attributable to the BSO, it is possible to realize an ultra-precise vector 
magentometer. 

21. We have demonstrated launching (from a MOT) and catching (using a FORT) of a 
small number of rubidium atoms using two separate chambers, as required for the 
clock synchronization protocol.  In one of these chambers, a magnetic guide was used 
to keep the launched atoms collimated until they reach the FORT.  In the other 
chamber, the FORT was brought physically closer to the MOT.  

22. We have demonstrated generation of paired photons at the Stokes and Anti-Stokes 
Frequencies simultaneously, using a Raman transition in a rubidium vapor cell.  This 
serves as an indirect evidence of the vapor cell acting as a quantum memory.  The 
next step would be to use a pair of vapor cells to demonstrate generation of 
entanglement between distant atomic clusters.  If atoms in Rydberg states are used, 
under conditions of dipole blockade, this process may be used to realize the clock 
synchronization protocol without having to use the high Q cavities. 
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3.3  Overview of Project Achievement and Future Directions 
 
 As discussed above, the primary objective of this project was to investigate the 
use of distant entanglement between atoms for synchronizing clocks, even in the presence 
of random fluctuations of the intervening path-length.  The protocol to be employed for 
this task makes use of the so-called Bloch-Siegert Oscillation.  In order to achieve this 
goal, it was necessary to demonstrate first two new processes: (a) encoding of the 
absolute phase of a microwave oscillator on to a set of  two-level atoms, and (b) 
establishment of distant, degenerate entanglement between a pair of trapped, single atoms 
in an asynchronus manner.   During the period of this project, we have accomplished the 
first goal completely.  The second goal is very challenging, and represents a holy grail in 
the field of distributed quantum information processing and quantum communication.   
We have made steady progress in this regard, and the work is continuing beyond the end 
of this project, given that such a source of distant entanglement is necessary for another 
project currently underway.   Specifically, we have demonstrated a spectrally bright 
source of entangled photon pairs that are necessary for transferring entanglement from 
photons to a pair of atoms located at significant distance.  Furthermore, we have built the 
pair of single-atom-in-a-cavity trap systems that are necessary for demonstrating the 
clock synchronization protocol.  Additional time and effort is necessary to finalize the 
demonstraion of the synchronization protocol.   
 In parallel to these experimental developments, we carried out theoretical 
investigations in support of this project.  For example, we have investigated the 
feasibility of a novel method of atom-interferomteric nanolithography that could be 
employed for creating the arrays of trapped atoms pairs for demonstrating the 
synchronization protocol in a practical system.   Furthermore, we have established the 
relativistic validity of our protocol, and developed the framework for Lorentz invariance 
for entanglement.  In particular, we have shown how a measurement of the degree of 
entanglement may be used to deduce the relative speed between two frames, without 
direct measurement of velocities.  Such a deduction can be used to enhance the accuracy 
of clock synchronization as well.   We have also established the fundamental constraints 
in quantum clock synchronization, and have estabslished several new protocols that can 
work in conjuction with our primary protocol to enhance the accuracy of clock 
synchronization.  The most significant one of these new protocols is the one that shows 
that transmitting absolute timing signals can be achieved --- with an accuracy beyond the 
classical limit of shot-noise --- by using a frequency-entangled source of laser pulses.  
The noise-reduction factor for this protocol is √N, where N is the number of frequencies 
entangled.   An explicit scheme was developed for generating the so-called Difference 
Beam (DB), for achieving this sub-shot-noise accuracy in transmitting timing signal. 
 The work performed by the people suppported under this project has resulted in 
thirty eight journal publications, and many conference presentations.  Some of the most 
important journal publications are included as attachments, and the content of these 
attached papers represent the primary body of this report.   This project has established 
the feasibility of quantum-effects induced enhancement in clock synchronization, and has 
paved the way for future efforts to realize a functional system of practical usage. 
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4.  TECHNOLOGY TRANSITION 
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In-Situ detection of the temporal and initial phase of the second harmonic of a microwave field
via incoherent fluorescence
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Measuring the amplitude and absolute �i.e., temporal and initial� phase of a monochromatic microwave field
at a specific point of space and time has many potential applications, including precise qubit rotations and
wavelength quantum teleportation. Here we show how such a measurement can indeed be made using resonant
atomic probes via detection of incoherent fluorescence induced by a laser beam. This measurement is possible
due to self-interference effects between the positive- and negative-frequency components of the field. In effect,
the small cluster of atoms here act as a highly localized pickup coil, and the fluorescence channel acts as a
transmission line.

DOI: 10.1103/PhysRevA.71.063408 PACS number�s�: 32.80.Qk, 03.67.Hk, 03.67.Lx

Measurement of the amplitude and the absolute �i.e., tem-
poral and initial� phase of a monochromatic wave is chal-
lenging because in the most general condition the spatial
distribution of the field around a point is arbitrary. Therefore,
one must know the impedance of the system between the
point of interest and the detector, and ensure that there is no
interference with the ambient field. It is recently shown in
the literature that the absolute phase measurement can be
used for accurate qubit rotations �1–3� and quantum wave-
length teleportation �4–6�.

Before we describe the physics behind this process, it is
instructive to define precisely what we mean by the term
“absolute phase.” Consider, for example, a microwave field
such that the magnetic field at a position R is given by
B�t�=B0 cos��t+��x̂, where � is the frequency of the field
and � is determined simply by our choice of the origin of
time. The absolute phase is the sum of the temporal and
initial phases—i.e., �t+�. In order to illustrate how this
phase can be observed directly, consider a situation where a
cluster of noninteracting atoms is at rest at the same location.
For simplicity, we assume each atom to be an ideal two-level
system where a ground state �0� is coupled to an excited state
�1� by this field B�t�, with the atom initially in state �0�. The
Hamiltonian for this interaction is

Ĥ = ���0 − �z�/2 + g�t��x, �1�

where g�t�=−g0 cos��t+��, g0 is the Rabi frequency, �i are
the Pauli matrices, and the driving frequency �=� corre-
sponds to resonant excitation. We consider g0 to be of the
form g0�t�=g0M�1−exp�−t /�sw�� with a switching time �sw

relatively slow compared to other time scales in the
system—i.e., �sw��−1 and g0M

−1 .
As we have shown before �2,3�, without the rotating-wave

approximation �RWA� and to the lowest order in �
��g0 /4��, the amplitudes of �0� and �1� at any time t are as
follows:

C0�t� = cos�g0��t�t/2� − 2�� sin�g0��t�t/2� , �2�

C1�t� = ie−i��t+���sin�g0��t�t/2� + 2�B�* cos�g0��t�t/2�	 ,

�3�

where ���i /2�exp�−i�2�t+2��� and g0��t�
��1/ t�
0

t g0�t��dt�=g0�1− �t /�sw�−1�1−exp�−t /�sw��	. If we
produce this excitation using a 	 /2 pulse �i.e., g0�����=	 /2�
and measure the population of state �1� after the excitation
terminates �at t=��, we get a signal

�C1„g0����,�…�2 = 1/2 + � sin�2��� + ��� . �4�

This signal contains information of both the amplitude
and phase of the field B�t�. The second term of Eq. �3� is
related to the Bloch-Siegert shift �7,8�, and we have called it
the Bloch-Siegert oscillation �BSO� �2,3�. It is attributable to
an interference between the so-called corotating and counter-
rotating parts of the oscillating field, with the atom acting as
the nonlinear mixer. For �=0, we have the conventional
Rabi flopping that is obtained with the RWA. For a stronger
coupling field, where the RWA is not valid, the second term
of Eq. �3� becomes important �2,3�, and the population will
depend now both on the Rabi frequency and the phase of the
driving field. In recent years, this effect has also been ob-
served indirectly using ultrashort optical pulses �9–11� under
the name of carrier-wave Rabi flopping. However, to the best
of our knowledge, the experiment we report here represents
the first direct, real-time observation of this effect.

From the oscillation observed, one can infer the value of
2��t+��, which represents the absolute phase of the second
harmonic. This is equivalent to determine the absolute phase
of the fundamental field, ��t+��, modulo 	. In principle, a
simple modification of the experiment can be used to elimi-
nate the modulus 	 uncertainty. Specifically, if one applies a
dc magnetic field parallel to the rf field, it leads to a new
oscillation �in the population of either level� at the funda-
mental frequency, with exactly the same phase as that of the
driving field. In the experiment described here, we have re-
stricted ourselves to the case of determining the absolute
phase of the second harmonic only.

PHYSICAL REVIEW A 71, 063408 �2005�
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While the above analytical model presented here is based
on a two level system, practical examples of which are pre-
sented in Ref. �2�, the effect is more generic, and is present
even in three-level or multilevel systems. In particular, we
employed a three-level system to observe this effect, due
primarily to practical considerations. The specific system
used consists of three equally spaced Zeeman sublevels of
87Rb �5 2S1/2: F=1: mF=−1, 0, and 1, denoted as states �0�,
�1�, and �2�, respectively�, where the degeneracy can be lifted
by applying an external bias field. We have performed nu-
merical simulations to confirm the presence of the BSO sig-
nature in the population dynamics of such a system as de-
scribed below.

Consider an equally spaced, ladder-type three-level sys-
tem ��0�, �1�, and �2��. The transition frequencies for �0�-�1�
and �1�-�2� are of the same magnitude �. We also consider
that a direct transition between �0� and �2� is not allowed.
Now, let the system be pumped by the same field at a fre-
quency �. Consider also that the Rabi frequency for the �0�-
�1� transition is g0 and that for �1�-�2� is also g0. Then, the
Hamiltonian of the three-level system in a rotating frame can
be written as

H̃
ˆ
� = − g0�1 + exp�− i2�t − i2�����0��1� + �1��2�� + c.c.,

�5�

where �=�. The amplitudes of the three levels are calculated
numerically by solving the Schrödinger equation for the
above Hamiltonian. The BSO amplitudes are then calculated
by subtracting the population amplitude of each level with
the RWA from the population amplitude without the RWA.
The BSO oscillations for all the levels of such a system are
shown in Fig. 1.

The experimental configuration, illustrated schematically
in Fig. 2, uses a thermal, effusive atomic beam. The rf field is
applied to the atoms by a coil, and the interaction time � is
set by the time of flight of the individual atoms in the rf field

before they are probed by a strongly focused and circularly
polarized laser beam. The rf field couples the sublevels with
�
m�=1, as detailed in the inset of Fig. 2. Optical pumping is
employed to reduce the populations of states �1� and �2� com-
pared to that of state �0� prior to the interaction with the
microwave field.

A given atom interacts with the rf field for a duration �
prior to excitation by the probe beam that couples state �0� to
an excited sublevel in 5 2P3/2. The rf field was tuned to
0.5 MHz, with a power of about 10 W, corresponding to a
Rabi frequency of about 4 MHz for the �0�→ �1� as well as
the �1�→ �2� transition. The probe power was 0.5 mW fo-
cused to a spot of about 30 �m diameter, giving a Rabi
frequency of about 60 �, where ��6.06 MHz� is the lifetime
of the optical transition. The average atomic speed is
500 m/s, so that the effective pulse width of the probe, �LP,
is about 60 ns, which satisfies the constraint that �LP1/�.
Note that the resolution of the phase measurement is essen-
tially given by the ratio of min��LP ,�−1� and 1/�, and can be
increased further by making the probe zone shorter. The fluo-
rescence observed under this condition is essentially propor-
tional to the population of level �0�, integrated over a dura-
tion of �LP, which corresponds to less than 0.3 Rabi period of
the rf driving field �for g0M / �2	�=4 MHz�. Within a Rabi
oscillation cycle, the BSO signal is maximum for g0���� /2
= �2n+1�	 /2, where n=0,1 ,2 , . . ., so that there is at least
one maximum of the BSO signal within the region of the
probe.

FIG. 1. BSO amplitude versus time t �in units of g0
−1� plots for

all the levels of a three-level system. The initial densities of the
levels are �00�t=0�=0.5, �11�t=0�=0.3, and �22�t=0�=0.2, the Rabi
frequency g0=1, and the resonant frequencies �02=�21=10.

FIG. 2. Experimental setup. The 1-mm cross section rubidium
atomic beam passes through the symmetry axis of the rf coil whose
magnetic field is along the beam. The rf field of frequency � is fed
by a power amplifier connected to the resonant coil. A circularly
polarized probe laser beam is focused down to 30 �m in diameter
through a gap in the middle of the rf coil and perpendicularly to the
atomic beam. The atomic fluorescence is collected by the lens and
detected by an avalanche photodiode �APD�. The phase signature
appears in the fluorescence signal encoded in an oscillation at a
frequency 2� due to the Bloch-Siegert oscillations. In the picture, �
is an additional phase delay due to the APD circuits and cabling.
Inset: Diagram of the relevant sublevels of the D2 line of 87Rb. The
numbers on the left represent the total angular momentum of the
respective levels. The strong driving rf field couples to the ground-
state Zeeman sublevels. The probe beam must be resonant with an
appropriate optical transition for the observation of the phase-
locked signal, as discussed in the main text.

CARDOSO et al. PHYSICAL REVIEW A 71, 063408 �2005�
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Note that atoms with different velocities have different
interaction times with the rf field and produce a spread in the
BSO signal amplitude within the probe region. However, the
phase of the BSO signal is the same for all the atoms, since
it corresponds to the value of ���+�� at the time and loca-
tion of interaction. Thus, there is no washout of the BSO
signal due to the velocity distribution in the atomic beam.

Figure 3 shows the spectrum of the observed BSO signal.
In Fig. 3�a�, we show that the BSO stays mainly at 2�. When
the probe beam is blocked, there is no signal �Fig. 3�b��.
When the rf intensity is increased a component of the BSO at
4� begins to develop, as predicted. For the data in Fig. 4, the
second harmonic of the driving field is used to trigger a
100-MHz digital oscilloscope and the fluorescence signal is
averaged 256 times. When the probe beam is tuned to the
F=1↔F�=0 transition, the population at m=−1 state is
probed. When the probe is tuned to F=1↔F�=1, the com-
bined populations of m=−1 and m=0 states are probed. That
results in an effective detection of the complement of the
population of m=1. On the other hand, when the probe beam
is locked to the F=1↔F�=2 transition, all three Zeeman
sublevels of F=1 are simultaneously probed and the phase
information is not clearly present, since the total population
of level F=1 is a constant. The observed residual phase in-
formation is a result of different coupling efficiencies for
each of the three ground Zeeman sublevels. We observed that
the BSO signal amplitude varies as a function of an external
magnetic field applied in the ẑ direction, with a peak corre-
sponding to a Zeeman splitting matching the applied fre-
quency of 0.5 MHz.

In Fig. 5, we show that the fluorescence signal is phase
locked to the second harmonic of the driving field. First, we
placed a delay line of 0.4 �s on the cable of the reference
field used to trigger the oscilloscope and recorded the fluo-

rescence �Fig. 5�a��. Then, we put the 0.4-�s delay line on
the BSO signal cable and recorded the fluorescence �Fig.
5�b��. The phase difference between the signals recorded in
Figs. 5�a� and 5�b� is approximately 0.8 �s, as expected for a
phase locked fluorescence signal. The data presented were
for the probe resonant with the transition F=1↔F�=1, but
the same results were observed for F=1↔F�=0.

To summarize, we report the first direct observation of the
absolute phase of the second harmonic of an oscillating elec-

FIG. 3. Bloch-Siegert oscillation spectra. rf at 0.5 MHz and
Rabi frequency around 4 MHz. �a� Probe beam resonant with the
5S1/2, F=1↔5S3/2, F�=0 transition. The signal appears at 1 MHz
with a linewidth less than 1 kHz �resolution limited by the spectrum
analyzer�. �b� Probe beam blocked. The dip structure around
100 kHz is an artifact due to the amplifier gain curve. Inset: Spec-
trum for same configuration and rf Rabi frequency around 10 MHz.
Notice the 2-MHz harmonic which corresponds to the higher-order
BSO at 4�.

FIG. 4. Time dependence of the fluorescence signal at 2� when
the probe beam is resonant to different excited states. The lines �a�,
�b�, and the noisy line �c� correspond to the probe locked to the
transitions F=1→F�=0, F=1→F�=1, and F=1→F�=2, respec-
tively, of the 5S1/2→5P3/2 transition in 87Rb.

FIG. 5. Demonstration of phase-locked fluorescence. T is the
period of the Bloch-Siegert oscillation. �a� Population vs time when
a 0.4T delay line was inserted in the reference field cable. �b� Popu-
lation vs time when the same 0.4T delay line was placed in the
fluorescence signal cable. The figure shows that signal �b� is about
0.8T ahead of signal �a�, confirming that the atomic fluorescence
carries phase information which is locked to the absolute rf field
phase. The solid and dashed sinusoidal smooth curves are fittings to
the experimental data and were used for period and delay
determination.
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tromagnetic field using self-interference in an atomic reso-
nance. This process is important in the precision of quantum
bit rotations at a high speed. The knowledge of the absolute
phase of a rf field at a particular point of space may also be
useful for single-atom quantum optics experiments. For ex-
ample, an extension of this concept may possibly be used to
teleport the wavelength of an oscillator, given the presence
of degenerate distant entanglement, even in the presence of
unknown fluctuations in the intervening medium �4–6,12�.
Finally, this localized absolute phase detector may prove use-

ful in mapping of radio-frequency fields in microcircuits. Al-
though a particular alkali-metal atom was used in the present
experiment, the mechanism is robust and could be observed
in virtually any atomic or molecular species.

This work was supported by DARPA Grant No. F30602–
01–2–0546 under the QUIST program, ARO Grant No.
DAAD19–001–0177 under the MURI program, NRO Grant
No. NRO-000–00–C-0158, and AFOSR Grants: No.
F49620–02–1-0400 and No. FA9550–04–1–0189.

�1� D. Jonathan, M. B. Plenio, and P. L. Knight, Phys. Rev. A 62,
042307 �2000�.

�2� M. S. Shahriar, P. Pradhan, and J. Morzinski, Phys. Rev. A 69,
032308 �2004�.

�3� P. Pradhan, G. C. Cardoso, and M. S. Shahriar, e-print quant-
ph/0402112.

�4� R. Jozsa, D. S. Abrams, J. P. Dowling, and C. P. Williams,
Phys. Rev. Lett. 85, 2010 �2000�.

�5� M. S. Shahriar, P. Pradhan, G. C. Cardoso, V. Gopal, and G.
Pati, e-print quant-ph/0309085.

�6� E. Burt, C. Ekstrom, and T. Swanson, e-print quant-ph/
0007030.

�7� L. Allen and J. Eberly, Optical Resonance and Two-Level At-
oms �Wiley, New York, 1975�.

�8� F. Bloch and A. J. F. Siegert, Phys. Rev. 57, 522 �1940�.
�9� G. G. Paulus et al., Nature �London� 414, 182 �2001�.

�10� O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F.
X. Kärtner, Phys. Rev. Lett. 87, 057401 �2001�.

�11� O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F.
X. Kärtner, Phys. Rev. Lett. 89, 127401 �2002�.

�12� S. Lloyd, M. S. Shahriar, J. H. Shapiro, and P. R. Hemmer,
Phys. Rev. Lett. 87, 167903 �2001�.

CARDOSO et al. PHYSICAL REVIEW A 71, 063408 �2005�

063408-4

12

cameras
Text Box

goodelle
Rectangle



 1

[To appear in Optics Communications] 
       Wavelength Teleportation via Distant Quantum Entanglement  
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Abstract 

 
Recently, we have shown theoretically [1] as well as experimentally [2] how the phase of an 
electromagnetic field can be determined by measuring the population of either of the two states 
of a two-level atomic system excited by this field, via the so-called Bloch-Siegert oscillation 
resulting from the interference between the co- and counter-rotating excitations.  Here, we show 
how a degenerate entanglement, created without transmitting any timing signal, can be used to 
teleport this phase information.  This phase-teleportation process may be applied to achieve 
wavelength teleportation, which in turn may be used for frequency-locking of remote oscillators.  
   
PACS Number(s): 03.67.-a, 03.67.Hk, 03.67.Lx, 32.80.Qk 
 
 
            The task of synchronizing a pair of oscillators that are separated in space is important for 
many practical applications, such as the global positioning system (GPS) [3] and the very large 
base interferometry (VLBI) [4].  Conventionally, this is performed by transmitting timing signals 
between the oscillators.  Consider first the ideal situation where the intervening medium is stable 
and fully characterized.  The accuracy of the synchronization process is then limited by the 
uncertainty in the timing signal.  The best result achievable is limited by the signal to noise ratio 
(SNR).  It is generally possible in most cases to eliminate sources of systematic noises, so that 
the fundamental constraint is the shot noise limit (SNL). In principle, specially prepared quantum 
states can reduce the effective noise below the SNL.  However, since the level of signal in this 
case is typically much weaker, the actual SNR achievable this way is far below what can be 
achieved using classical states.   Most of the recent proposals [5-9] for achieving improved 
oscillator synchronization (OS) using quantum processes suffer from the same constraint, so that 
in practice they are inferior to classical approaches.  Thus, given the current state of technology, 
quantum mechanical effects is not likely to help in the process of OS under the ideal situation.  

In a real-life application such as in the field of GPS, the density of the intervening 
medium fluctuates randomly, leading to a corresponding fluctuation in the time needed for a 
signal to travel between the oscillators. Under this condition, it is fundamentally impossible to 
synchronize the oscillators to an accuracy higher than the corresponding fluctuation in the travel 
time .  This follows from the principle of special relativity, which is built on the axiom that there 
exists a maximum speed --- namely, the speed of light in vacuum --- at which information can 
propagate.  As such, the notion of oscillator synchrony is defined with respect to the time it takes 
for light to traverse the distance between the oscillators.  It then follows that if this travel time
 
 
                                                           

13    13

cameras
Text Box

goodelle
Rectangle

goodelle
Text Box
Appendix B: 



 2

itself is fluctuating, then the oscillator synchrony is undefined, and cannot be achieved on the 
timescale of the fluctuation. One can define and establish only an average synchrony, valid only 
for timescales longer than that of the fluctuation.  In all situations of practical interest, OS always 
implies the achievement of this average synchrony.  This conclusion also holds for the clever 
technique demonstrated by Ma et al. [10]. 

An alternative way to improve the average synchrony is through frequency locking.  
Specifically, consider a typical application where each oscillator is locked to a metastable atomic 
transition.  Most of the recent proposals about oscillator synchronization, including the Jozsa 
protocol [9], make the assumption that each oscillator continues to operate at some ideal 
transition frequency.  In practice, however, this is not the case.  The frequency of each oscillator 
undergoes shifts and drifts due to a host of reasons. These fluctuations lie at the heart of 
oscillator asynchrony.  As such, minimizing the relative drifts in the frequencies is perhaps the 
most effective way to minimize the error in OS. This approach opens up new possibilities for 
exploring whether quantum mechanical effects may outperform classical approaches. In this 
paper, we propose a new technique for locking the frequencies of two distant oscillators, via the 
process of wavelength teleportation.   

The process underlying this technique is the so-called Bloch-Siegert Oscillation (BSO), 
which results from an interference between the co- and counter-rotating parts of a two-level 
excitation.   Recently, we have analyzed the basic features of the BSO theoretically [1], in the 
context of how it may affect the accuracy of the rotation of a quantum bit.  We have also 
observed the key feature of the BSO using an atomic beam [2], showing specifically that the 
excited state population of a two-level system driven by a strong microwave field reveals an 
oscillation that is in phase with the second harmonic of the driving field.  In applying the BSO to 
the task of frequency locking, the phase variation of an oscillator is first mapped by Alice 
(keeper of the first oscillator) to the wave-functions of an array of atoms, by making use of the 
fact that the amplitude of the excited state (as well as that of the ground state) depends explicitly 
on the phase of the driving field.  The maximum number of atoms needed to encode the phase 
variation can be very small, and is given by the Nyquist sampling criterion.  Distant 
entanglement, produced using an asynchronous technique [11], is used to teleport the quantum 
state of each of these atoms to a matching atom with Bob (keeper of the second oscillator).  Bob 
can thus recreate the exact phase variation of Alice's oscillator locally, and compare with the 
same for his oscillator.  We discuss the potential constraints and advantages of this approach 
after presenting the scheme in detail.     

Consider first a situation where Alice and Bob each has an atom that has two degenerate 
ground states (|1> and |2>), each of which is coupled to a higher energy state (|3>), as shown in 
Fig. 1. We assume the 1-3 and 2-3 transitions are magnetic dipolar, and orthogonal to each other, 
with a transition frequency ω.  For example, in the case of 87Rb, |1> and |2> correspond to 
52P1/2:|F=1,mF=-1> and 52P1/2:|F=1,mF=1> magnetic sublevels, respectively, and |3> corresponds 
to 52P1/2:|F=2,mF=0>  magnetic sublevel [2].  Left and right circularly polarized magnetic fields, 
perpendicular to the quantization axis, are used to excite the 1-3 and 2-3 transitions, respectively.  
We take ω to be the same as the oscillator frequency ωc.  

We assume that Alice and Bob’s fields at ω have the form BA=BA0Cos(ωt+φ) and 
BB=BB0Cos(ωt+χ), respectively.  The origin of the time variable, t, is therefore arbitrary, and 
does not affect the  phase difference, Ω≡(φ-χ).  The oscillators are assumed to be in phase if 
Ω=0, so that if Bob determines that at some instant his magnetic field is maximum and positive 
in some direction rB, then Alice will also find her magnetic field to be maximum and positive in
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some direction rA  at the same instant.  As long as Alice and Bob agree on this definition of 
phase-locking, and use the same definitions all the time, then rB  and rA  do not have to be the 
same.  During the magnetic resonance excitations, the value of any dc magnetic field will be 
assumed to be vanishing.  Symmetry then dictates that any physical observable will be 
independent of the choice of the quantization axis, as long as it is perpendicular to rA for Alice, 
and perpendicular to rB  for Bob.  In order to describe our protocol, we now summarize briefly 
the theory behind the  Bloch-Siegert oscillation that occurs when a two-level interaction is 
considered without the rotating wave approximation (RWA) [12-16], and is presented in greater 
detail in ref. [1].  We also describe the condition for the time reversal of an arbitrary evolution 
under this condition, another necessary element of our protocol.   
 We consider an ideal two-level system where a ground state  |1>  is coupled to a higher 
energy state  |3>.  We assume that the 1-3  transition is magnetic dipolar, with a transition 
frequency ω, and the magnetic field is of the form B=B0Cos(ωt+φ).  In the dipole 
approximation, the Hamiltonian can be written as: 
 
                                                  xz tgH σσσε )(2/)( 0 +−=

)
                                                     (1)   

 
where g(t) = -go  [exp(iωt+iφ) + c.c.]/2,  iσ  are the Pauli  matrices,  and  ε=ω corresponding to 
resonant  excitation. The state vector is written as: 
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We   perform a rotating wave transformation by operating on  |ξ(t)> with the unitary operator  
.2/))(exp(2/)( 00 zz itiQ σσφωσσ −++++=

)
 The Schroedinger equation then takes the form 

(setting h=1): >−=
∂

>∂ )(~|)(~)(~| ttHi
t
t ξξ , where the effective Hamiltonian is given by: 

 
               −

∗
+ += σασα )()(~ ttH ,                                          (3) 

 
with α(t) = -g0[exp(-i2ωt-i2φ)+1]/2, and the rotating frame state vector is: 
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.                                                             (4) 

 
         The general solution, without RWA, to Eq.4 can be written in the form: 
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with the couplings described by 
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2/)(2 1−

•

++= nnonn bbigania ω ,                                                         (6a) 

2/)(2 1+

•

++= nnonn aaigbnib ω .                                                         (6b) 
 
We consider )1()( /

000
swt

M egtgg τ−−=≡  to have a slower time-dependence compared to other 
characteristic timescales such as 1/ω and 1/g0M, where g0M is the peak value of g0  and swτ  is the 
switching time.  Under this condition, one can solve these equations by employing the method of 
adiabatic elimination, which is  valid to first order in η≡(g0 /4ω).  As derived in refs. [1] and [2], 
the solutions are: 
                         )2/)((2)2/)(()( '

0
'
01 ttgSinttgCostC ⋅Σ−= η  ,                                                   (7a)  

           )]2/)((2)2/)(([)( '
0

*'
0

)(
3 ttgCosttgSinietC ti ⋅Σ+= +− ηφω   ,                                      (7b) 

 

where )]22(exp[)2/( φω +−≡Σ tii  and ∫ −−== −
t

swsw ttgdttgttg
0

1
0

''
0

'
0 )]/exp()/(1[)(/1)( ττ  . 

To lowest order in η this solution is normalized at all times. Note that if Alice were to carry this 
excitation on an ensemble of atoms through for a π/2 pulse, and measure the population of the 
state |3>A immediately (at t=τ, the moment when the π/2 excitation ends), the result would be a 
signal given by [1+2ηSin(2ωτ+2φ)]/2, which contains information related to the amplitude and 
phase of her field.   
 Next, we consider the issue of exact time reversal of such an excitation.  The 
Schroedinger eqn. (4)  has the formal solution: 
 

∫ >−>= 2

1

)(~|]')'(exp[)(~| 1

~

2

t

t
tdttHit ξξ  .                                       (8) 

If  the RWA is made, then 
~
H  is time independent.  In that case, if one starts an evolution at t1, 

proceed for any duration T, then reverses the sign of 
~
H  by shifting the phase of the magnetic 

field by  π, and continues with the evolution for another duration T, then the system returns back 

to the starting state.  Here, however, RWA is not made, so  that 
~
H  depends on time.  Therefore, 

the exact reversal can be achieved in this manner only if T=mπ/ω for any integer value of m. 
[9,1,2]  

Returning to the task at hand, our protocol starts by using a scheme, developed earlier by 
us [11]  to produce a degenerate entanglement of the form  |ψ>=(|1>A|2>B - |2>A|1>B)/√2.   
Recalling briefly, in this technique, a pair of entangled photons, produced by a parametric down 
converter, for example, are transmitted to Alice and Bob, each receiving one of the photons.  The 
capturing process is checked indirectly, using a quantum non-demolition measurement.  If the 
verification process confirms the capture of the photons, then the quantum states of the atoms 
remain undisturbed. Otherwise, the process is re-initialized (placing each atm in state |1>) and 
repeated until it succeeds.  An optically off-resonant Raman transition (with one leg 
corresponding to a pump frequency, and the other corresponding to one of the entangled 
photons) coupling |1> to |2> is used by Alice as well as Bob to capture the photons, resulting in 
the entangled state shown above.   Next, Alice attenuates her field so that the counter-rotating 
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term in the Hamiltonian can be ignored (this assumption is not essential for our conclusion, but 
merely simplifies the algebra somewhat), and excites a π-pulse coupling |2>A to |3>A, and then 
stops the excitation.  The degree of attenuation is such that the Rabi frequency is much less than 
the transition freuency, so that the RWA is valid.  Similarly, Bob uses a field, attenuated as 
above, to excite a π-pulse coupling |2>B to |3>B, and then stops the excitation.  Using digital 
communications over a classical channel, Alice and Bob wait until they both know that these 
excitations have been completed.  The resulting state is then given by : 

 
            |ψ(t)>=[|1>A|3>Bexp(-iωt-iχ) - |3>A|1>Bexp(-iωt-iφ)]/√2.                                (9) 
 

The next step is for Alice to make a measurement along the |1>A↔|3>A transition.  For this 
process, she chooses a much larger value of go, so that the RWA can not be made. The state she 
wants to measure is the one that would result if one were to start from state |1>A, and evolve the 
system for a π/2 pulse using this stronger goM: 
 

                      { } { }[ ]
A

ti
AA

ie 321121
2

1 *)( Σ++Σ−≡+ +− ηη φω                                               (10) 

   
where we have made use of  Eq. (9).  The state orthogonal to |+>A results from a 3π/2 pulse: 
 

                    { } { }[ ]
A

ti
AA

ie 321121
2

1 *)( Σ−−Σ+≡− +− ηη φω                                           (11)      

 
To first order in η, these two states are each normalized, and orthogonal to each other.  As such, 
one can re-express the state of the two atoms in Eq. (9)  as: 
 

                                              [ ]
BABA

t +−−−+=
2

1)(ψ                                                  (12)   

here we have defined: 
 

                    { } { }[ ]
B

ti
BB

ie 321121
2

1 *)( Σ++Σ−≡+ +− ηη χω  ,                                              (13a) 

                    { } { }[ ]
B

ti
BB

ie 321121
2

1 *)( Σ−−Σ+≡− +− ηη χω .                                        (13b) 

 
   She can measure the state |+>A by taking the following steps: (i) Shift the phase of the B-field 
by π, (ii) Fine tune the value of go so that  )('

0 tg =ω/2m, for an integer value of m, (iii) apply the 
field for a duration of T=π/2 )('

0 Tg , and (iv) detect state |1>A.  Note that the constraint on go 

ensures that T=mπ/ω, which is necessary for time reversal to work in the absence of the RWA. 
Once Alice performs this measurement, the state for Bob collapses to |->B, given in eqn. (14).  
Note that if η is neglected, then the measurement produces a |->B that contains no information 
about the phase of Alice’s oscillator, which is analogous to the Jozsa protocol [9]. 
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In the present case, |->B  does contain information about the amplitude and the phase of 
Alice’s oscillator signal.  In order to decipher this, Bob measures his state |1>B.  The probability 
of success is:  

 [ ])2sin(21
2
11

2
φηφ +=−≡

BB
p .                                                       (14) 

where we have kept terms only to the lowest order in η.  Of course, the value of φ (mod 2π), the 
phase difference, can not be determined from knowing Sin(2φ) alone.  However, this whole 
process can be repeated after, for example, Alice shifts the phase of her B-field by π/2, so that 
Bob can determine the value of Cos(2φ).  It is then possible to determine the value of φ (mod 2π) 
unambiguously. 
 The overall process can be carried out in one of two ways.  First, consider the situation 
where Alice and Bob starts with X pairs of atoms, and entangle each pair in the form of equation 
(13).  Then, over a digital communication channel, Alice sends Bob a list of the M atoms she 
found in state |1>A after performing her measurement process described above.  Bob performs 
his measurement only on this subset of atoms.  Suppose he finds L number of atoms in state |1>B.  
Then: 
 

 )2()
2
1( φηζ Sin

M
L

→−≡ ,       for large M                                           (15) 

 
Thus, the value of η determined asymptotically for a large number of entangled pairs will reveal 
the value of Sin(2φ).  Alternatively, if only a single pair of atoms is available, then the same 
result can be obtained by repeating the whole process X times, assuming that φ remains 
unchanged during the time needed for the process. 
 Note that what is determined by Bob is φ, not Ω.  Thus, it is not possible to measure the 
absolute phase difference in this manner.  However, one could use this approach of phase 
teleportation in order to achieve frequency locking of two remote oscillators.  This is illustrated 
in figure 2.  Briefly, assume that Bob has an array of N atoms.  Assume further that Alice also 
has an identical array of atoms.  For our protocol, the physical separations between the 
neighboring atoms do not have to match.  In principle, one can create such an identical pair of 
arrays by embedding N rows of atoms (or quantum dots) in a substrate patterned 
lithographically, with two atoms in each row, and then splitting it in two halves.  To start with, 
the corresponding atoms in each array are entangled with each other using the asynchronous 
approach of Ref. 11.  Here, we assume that the two oscillators may differ in frequency.  The 
frequency-locking algorithm then proceeds as follows.  Alice and Bob both apply their fields 
parallel to their arrays of atoms, so that the phase variation is 2π over their respective 
wavelengths.  After Alice makes her measurements of the state |+>A, using the same set of steps 
as described above, she informs Bob, over a classical communication channel, the indices of her 
atoms that were found in this state.   Bob now measures the state |->B for this subgroup of atoms 
only, using an analogous set of time-reversed excitation steps which ends in observing his atom 
in state |3>B.  For a given atom in this subgroup, the phase of his field at that location at the time 
Bob starts the measurement affects the probability of success in finding the atom in state |3>B at 
the end of the measurement process.  This phase is varied as Bob repeats the measurement for 
different measurement-starting-times (modulo 2π/ωB, where ωB is the frequency of Bob's 
oscillator).   It is easy to show that there exists a choice of this phase for which the probability of 

18

cameras
Text Box



 7

success is 100%.  However, the success probability for atoms (in the post-selection subgroup) 
would vary with location if the frequencies of Bob's and Alice's oscillators are not the same. This 
effect can be used by Bob to adjust his oscillator frequency, thereby achieving frequency 
locking.  The Nyquist sampling criterion dictates that the number of atoms in this subgroup can 
be as low as only two, so that N can be quite small, thus making this protocol potentially 
practicable. 
 The optimal SNR that may be achievable in the protocol outlined here will be determined 
fundamentally by the SNL.  For a measurement interval of τ, the SNR in this case would be 
η√(Mτ/τo), where τo (<<τ) is the time needed to carry out a single sequence in the protocol. The 
values of all these parameters (η, M and τo) would depend on the actual technology to be 
employed in realizing the protocol.  As a concrete example, let us assume a value of η to be 
0.025, corresponding to a case where (g0 /ω)=0.1.  The values of M and τo are not independent of 
each other; the bigger the M, the bigger the amount of time that would be necessary to carry out 
a single sequence of the protocol.  Note that τo determines the speed with which one wants to 
update the frequencies of the oscillator (i.e., the inverse of the bandwidth of the frequency 
locking servo).  Let us assume a servo bandwidth of 1 kHz, corresponding to a value of τo=(1 
msec/2π).  For a lithographically patterned substrate, it is easy to envision a value of M as large 
as 104.  For an averaging time of 1 second, the SNR is then close to 200.  Given that, to the best 
of our knowledge, this is the only technique for performing frequency locking in a manner that is 
independent of the fluctuations in the intervening optical path length, it is not possible to 
compare this value to any other technique directly.   

To summarize, previously we have shown how the phase of an electromagnetic field can 
be determined by measuring the population of either of the two states of a two-level atomic 
system excited by this field, via the so-called Bloch-Siegert oscillation.  Here, we show how a 
degenerate entanglement, created without transmitting any timing signal, can be used to teleport 
this phase information.  This in turn makes it possible to achieve wavelength teleportation, one 
possible application of which is frequency-locking of remote oscillators. 

 
 This work was supported by DARPA grant No. F30602-01-2-0546 under the QUIST 
program, ARO grant No. DAAD19-001-0177 under the MURI program, and NRO grant No. 
NRO-000-00-C-0158. 
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Fig. 1.  Schematic illustration of the basic protocol for phase locking two remote oscillators, one 

with Alice (A), and the other with Bob (B), without transmitting a oscillator signal directly. The 

model energy levels can be realized, for example, using the metastable hyperfine Zeeman 

sublevels of  87Rb atoms, as detailed in the text. 
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Fig. 2.  Schematic illustration of the process to be employed for remote frequency locking.  The 

top (bottom) array shows the atoms co-located with and excited by Bob (Alice). The degree of 

correlation observed after executing the frequency-locking protocol displays a spatial variation 

only if the frequencies of Bob's and Alice's oscillators are different, as shown in the middle.  

Elimination  of such a variation leads to frequency locking. 
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Driver-phase-correlated  uctuations in the rotation of a strongly driven quantum bit
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The need to maximize the number of operations of a quantum bit within its decoherence time may require
the ratio of Rabi frequency to transition frequency to be large enough to invalidate the rotating-wave approxi-
mation. The state of the quantum bit under any initial condition then depends explicitly on the phase of the
driving  eld, resulting in driver-phase-correlated  uctuations and a violation of the rule that the degree of
excitation depends only on the pulse area. This is due to the interference of the excitations caused by the
corotating and counterrotating  elds, and is a signi cant source of error, correctable only by controlling the
driver phase. We present a scheme for observing this effect under currently realizable parameters.

DOI: 10.1103/PhysRevA.69.032308 PACS number(s): 03.67.Hk, 03.67.Lx, 32.80.Qk

In order to minimize the decoherence rate of a two-state
quantum bit (qubit) embodied in a massive particle, one of-
ten chooses to use low-energy transitions. In general, one is
interested in performing these transitions as fast as possible
[1–5] which demands a strong Rabi frequency. The ratio of
Rabi frequency to qubit transition frequency is therefore not
necessarily very small, thus invalidating the so-called
rotating-wave approximation (RWA). A key effect due to
violation of the RWA (VRWA) is the so-called Bloch-Siegert
shift [6–9] which is negligible in optical transitions, but is
manifested in nuclear magnetic resonance [10]. Here, we
show that VRWA leads to another important effect, which
can lead to controllable errors that are signi cant on the scale
of precisions envisioned for a functioning quantum computer
[11]. Speci cally , we show that under VRWA the population
difference between the two levels of the quantum bit, with
any initial condition, depends explicitly on the phase of the
driving  eld at the onset of an excitation pulse, which is a
violation of the rule [6] that for a two-level system starting in
the ground state, the population difference is a function of
the integral of the  eld amplitude over the pulse duration and
does not depend on the phase of the  eld. We provide a
physical interpretation of this effect in terms of an interfer-
ence of the excitations caused by the corotating and counter-
rotating  elds, and present a scheme for observing this effect
under currently realizable parameters.

To see the implication of this result, consider a scenario
where one has a qubit, initialized to the ground state, and
would like to prepare it to be in an equal superposition of the
ground and excited states. To this end, one would apply a
resonant pulse with an area of p /2 starting at a time t= t0.
Under the RWA, one does not have to know what the abso-
lute phase of the  eld, fP, is at t0, and the population differ-
ence for the qubit would be zero. Under VRWA, however,
the desired excitation would only occur if fP=0. Otherwise,
the population difference would have a component varying
as h sins2fPd, where h is a parameter that is proportional to
the ratio of Rabi frequency to transition frequency. Suppose
one has to apply this pulse to many such qubits, with a po-
tentially different fP for each (e.g., because the pulses are
applied at different times or the qubits are spatially sepa-

rated), but with identical pulse areas. The population differ-
ence for the qubits will then exhibit a  uctuation, correlated
to their respective values of fP. For a quantum computer,
this variation would represent a source of error. For some
experiments (e.g., Ref. [5]), the value of h is already close to
0.01, so that the magnitude of this error is much larger than
the ultimate accuracy s10 6 d desirable for a large-scale quan-
tum computer [11] and must be controlled.

To illustrate this effect, we consider an ideal two-level
system where a ground state u0l is coupled to a higher-energy
state u1l. We also assume that the 0↔1 transition is mag-
netic dipolar, with a transition frequency v, and the magnetic
 eld is of the form B=B0 cossvt+fd. We now summarize
brie y the two-level dynamics without the RWA. In the di-
pole approximation, the Hamiltonian can be written as

Ĥ = ess0  szd/2 + gstdsx, s1d

where gstd= g0fexpsivt+ ifd+c.c.g /2, si are the Pauli ma-
trices, and e=v corresponds to resonant excitation. The
state vector is written as

ujstdl = FC0std
C1std G . s2d

We perform a rotating-wave transformation by operating on
ujstdl with the unitary operator Q̂, where

Q̂ = ss0 + szd/2 + expsivt + ifdss0  szd/2. s3d

The Schrödinger equation then takes the form ssetting "=1d

uj̃ l= iHstduj̃stdl where the effective Hamiltonian is given by

H̃ = astds+ + a*stds , s4d

with astd= sg0 /2dfexps i2vt  i2fd+1g, and in the rotating
frame the state vector is
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uj̃stdl ; Q̂ujstdl = FC̃0std

C̃1std
G . s5d

Now, one may choose to make the RWA, corresponding to
dropping the fast-oscillating term in astd. This corresponds
to ignoring effects ssuch as the Bloch-Siegert shiftd of the
order of sg0 /vd, which can easily be observable in an experi-
ment if g0 is large f6–10g. On the other hand, by choosing g0
to be small enough, one can make the RWA for any value of
v. We explore both regimes in this paper. As such, we find
the general results without the RWA.

From Eqs. (4) and (5), one gets two coupled differential
equations

C̃ 0std =  sg0/2df1 + exps i2vt  i2fdgC̃1std , s6ad

C̃ 1std =  sg0/2df1 + exps+ i2vt + i2fdgC̃0std . s6bd

We assume uC0stdu2=1 to be the initial condition and proceed
further to  nd an approximate analytical solution of Eq. (6).
Given the periodic nature of the effective Hamiltonian, the
general solution to Eq. (6) can be written in the form

uj̃stdl = o
n= `

` Fan

bn
Gexpfns i2vt  i2fdg . s7d

Inserting Eq. s7d into Eq. s6d and equating coefficients with
same the frequencies, one gets for all n,

a n = i2nvan + ig0sbn + bn 1 d/2, s8ad

b n = i2nvbn + ig0san + an+1d/2. s8bd

Here, the coupling between a0 and b0 is the conventional one
present when the RWA is made. The couplings to the nearest
neighbors, a±1 and b±1, are detuned by an amount 2v and so
on. To the lowest order in sg0 /vd, we can ignore terms with
un u .1, thus yielding a truncated set of six equations

a 0 = ig0sb0 + b 1 d/2, s9ad

b 0 = ig0sa0 + a1d/2, s9bd

a 1 = i2va1 + ig0sb1 + b0d/2, s9cd

b 1 = i2vb1 + ig0a1/2, s9dd

a  1 =  i2va 1 + ig0b 1 /2, s9ed

b  1 =  i2vb 1 + ig0sa 1 + a0d/2. s9fd

We consider g0 to have a time dependence of the form
g0std=g0Mf1 exps t /tswdg, where the switching time con-
stant tsw@v 1 ,g0M

 1 . We can solve these equations by em-
ploying the method of adiabatic elimination, which is valid
to  rst order in h;sg0 /4vd. Note that h is also a function of
time and can be expressed as hstd=h0f1 exps t /tswdg,

where h0;sg0M /4vd. We consider  rst Eqs. (9e) and (9f). In
order to simplify these two equations further, one needs to
diagonalize the interaction between a 1 and b 1 . De ne m 
;sa 1  b 1 d and m+;sa 1 +b 1 d, which now can be used to
reexpress these two equations in a symmetric form as

m  =  is2v + g0/2dm  ig0a0/2, s10ad

m + =  is2v  g0/2dm+ + ig0a0/2. s10bd

Adiabatic following then yields (again, to lowest order in h)
m <  ha0 and m+<ha0, which in turn yields a 1 <0 and
b 1 <ha0. In the same manner, we can solve Eqs. (9c) and
(9d), yielding a1<  hb0 and b1<0.

Note that the amplitudes of a 1 and b1 are vanishing (each
proportional to h2) to lowest order in h and thereby justify-
ing our truncation of the in nite set of relations in Eq. (9). It
is easy to show now

a 0 = ig0b0/2 + iDstda0/2, s11ad

b 0 = ig0a0/2  iDstdb0/2, s11bd

where Dstd=g0
2std /4v is essentially the Bloch-Siegert shift.

Equation (11) can be thought of as a two-level system ex-
cited by a  eld detuned by D. For simplicity, we assume that
this detuning is dynamically compensated for by adjusting
the driving frequency v. This assumption does not affect the
essence of the results to follow, since the resulting correction
to h is negligible. With the initial condition of all the popu-
lation in u0l at t=0, the only nonvanishing (to lowest order in
h) terms in the solution of Eq. (9) are

a0std < cosfg08stdt/2g, b0std < i sinfg08stdt/2g ,

a1std <  ih sinfg08stdt/2g, b 1 std < h cosfg08stdt/2g ,

where

g08std = 1/tE
0

t
g0st8ddt8 = g0f1  st/tswd 1 exps t/tswdg .

We have veri ed this solution via numerical integration of
Eq. (6) as shown later. Inserting this solution into Eq. (6) and
reversing the rotating-wave transformation, we get the fol-
lowing expressions for the components of Eq. (2):

C0std = cosfg08stdt/2g  2 hS sinfg08stdt/2g , s12ad

C1std = ie isvt+fdhsinfg08stdt/2g + 2hS* cosfg08stdt/2gj ,
s12bd

where we have de ned S;si /2dexpf is2vt+2fdg. To low-
est order in h, this solution is normalized at all times. Note
that if one wants to carry this excitation on an ensemble of
atoms using a p /2 pulse and measure the population of the
state u1l after the excitation terminates [at t=t when
g8stdt /2=p /2], the result would be an output signal given
by
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uC1„g08std,f…u2 =
1
2

f1 + 2h sins2ftdg , s13d

where we have defined the phase of the field at t=t to be
ft;vt+f. This signal contains information of both the am-
plitude and phase of the driving field.

This result can be appreciated best by considering an ex-
perimental arrangement of the type illustrated in Fig. 1. Con-
sider, for example, a collection of 87Rb atoms, caught in a
dipole force trap, where the states u0l;52S1/2 : uF=1,m=1l
and u1l;52S1/2 : uF=2,m=2l form the two-level system.
These states differ in frequencies by 6.683 47 GHz. When
illuminated by resonant right-circularly polarized light at a
frequency of 3.84431014 Hz, state u1l couples only to the
state u2l;52P3/2 : uF=3,m=3l, which in turn can decay only
to state u1l. This cycling transition can thus be used to pump
the system into state u1l. When a right-circularly polarized
microwave  eld at 6.683 47 GHz is applied, state u1l couples
only to state u0l, even when the RWA approximation breaks
down. The strong-coupling regime (e.g., h0 of the order of
0.1) can be reached, for example, by using a superconduct-
ing, high-Q s1010d microwave cavity [12]. The theoretical
model developed above is then a valid description of the
coupling between u0l and u1l.

The strong microwave  eld is turned on adiabatically with
a switching time constant tsw, starting at t=0. After an inter-
action time of t, chosen so that g08stdt=p /2, the population
of state u1l can be determined by coupling this state to the
state u2l with a short (faster than 1/v and 1/g0M) laser pulse
and monitoring the resulting  uorescence [13].

We have simulated this process explicitly for the follow-
ing parameters: v=2p36.683 473109 sec 1 , g0M =0.1, and
tsw=0.1. These numbers are easily achievable experimen-
tally. The laser pulse width tLP is chosen to be 10 1 2 sec in
order to satisfy the constraint that tL!1/v and tL!1/g0M.

In order to optimize the signal, the laser Rabi frequency VL
is chosen to be such that VLtL=p, so that all the populations
of state u1l are excited to state u2l at the end of the pulse. For
the cycling transition (1-2) and a pulse focused to an area of
25 mm2, the power needed for achieving this Rabi frequency
is 1.2 W, which is achievable experimentally. After the laser
pulse is turned off, the  uorescence is collected for a dura-
tion longer than the spontaneous-decay lifetime s32 nsecd of
state u2l. Under this condition, our simulation veri es that
the detector signal is essentially proportional to the popula-
tion of state u1l, as given by Eq. (13), with the proportional-
ity constant determined by the ef ciency of the detection
system. If 106 atoms are used (a number easily achievable in
a dipole trap), the signal-to-noise ratio can be more than 100
for the parameters considered here, assuming a detector solid
angle of 0.1p and a quantum ef ciency of 0.8. In Fig. 2(a),
we have shown the evolution of the excited-state population
as a function of the interaction time t using the analytical
expression of Eq. (12). Under the RWA, this curve would
represent the conventional Rabi oscillation. However, we no-
tice here some additional oscillations, which are magni ed
and shown separately in Fig. 2(b), produced by subtracting
the conventional Rabi oscillation (sin2fg08st)t /2gd from
Fig. 2(a). That is, Fig. 2(b) corresponds to what we
call the Bloch-Siegert oscillation (BSO), given by
h sinfg08stdtgsins2ftd. The dashed curve (c) shows the time
dependence of the Rabi frequency. These analytical results
agree closely with the results obtained via direct numerical
integration of Eq. (7). Consider next a situation where the
interaction time t is  xed so that we are at the peak of the
BSO envelope. The experiment is now repeated many times,
with a different value of f each time. The corresponding
population of u1l is given by h sins2ftd and is plotted as a
function of f in the inset of Fig. 2. This dependence of the

FIG. 1. Schematic illustration of an experimental arrangement
for measuring the phase dependence of the population of the excited
state u1l: (a) The microwave  eld couples the ground state su0ld to
the excited state su1ld. A third level, u2l, which can be coupled to u1l
optically, is used to measure the population of u1l via  uorescence
detection. (b) The microwave  eld is turned on adiabatically with a
switching time constant tsw, and the  uorescence is monitored after
a total interaction time of t.

FIG. 2. Illustration of the Bloch-Siegert oscillation (BSO): (a)
the population of state u1l, as a function of the interaction time t,
showing the BSO superimposed on the conventional Rabi oscilla-
tion; (b) the BSO oscillation (ampli ed scale) by itself, produced by
subtracting the Rabi oscillation from the plot in (a); and (c) the time
dependence of the Rabi frequency. Inset: BSO as a function of the
absolute phase of the  eld.
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population of u1l on the initial phase f (and, therefore, on the
 nal phase ft) makes it possible to measure these quantities.

Note, of course, that the speed of the detection system is
limited fundamentally by the spontaneous decay rate
g 1 (,32 nsec in this case) of state u2l. As such, it is impos-
sible in this explicit scheme to monitor the phase of the
microwave  eld on a time scale shorter than its period. If one
were interested in monitoring the phase of a microwave  eld
of a lower frequency (so that v 1 @g 1 ), it would be possible
to track the phase on a time scale much shorter than its
period. One possible set of atomic levels that can be used for
this purpose is the Zeeman sublevels (e.g., those of the
52S1/2 :F=1 hyper ne level of 87Rb atoms), where the energy
spacing between the sublevels can be tuned by a dc magnetic
 eld to match the microwave  eld to be measured. However,
the number of sublevels that get coupled is typically more
than 2. A simple extension of our theoretical analysis shows
that the signature of the phase of the microwave  eld still
appears in the population of any of these levels and can be
used to measure the phase. More generally, the phase signa-
ture is likely to appear in the population of the atomic levels,
no matter how many levels are involved, as long as the Rabi
frequency is strong enough for the RWA to break down.

A recent experiment by Martinis et al. [5] is an example
where a qubit is driven very fast. In this experiment, a qubit
is made using the two states of a current-biased Josephson
junction, the resonance frequency is v=6.9 GHz, and the
Rabi frequency is g=80 MHz. If this experiment is carried
out without keeping track of the phase of the driving  eld,
the degree of qubit excitation will  uctuate due to the BSO,
leading to an error which is of the order of g /v=0.01—i.e.,

nearly 1%. This error is much larger than the permissible
error rate of 10 6 for an error-correcting quantum computer
that would consist of 106 qubits [11]. In order to eliminate
the BSO-induced error, one can design the driving system
such that the phase is measured, e.g., by using an auxiliary
cluster of bits located close to the qubit of interest, at the
onset of the qubit excitation, and the measured value of the
phase is used to determine the duration of the excitation
pulse, in order to ensure the desired degree of excitation of
the qubit [14,15]. Finally, we point out that by making use of
distant entanglement, the BSO process may enable teleporta-
tion of the phase of a  eld that is encoded in the atomic state
amplitude, for potential applications to remote frequency
locking [16–19].

In conclusion, we have shown that when a two-level
atomic system is driven by a strong periodic  eld, the Rabi
oscillation is accompanied by another oscillation at twice the
transition frequency, and this oscillation carries information
about the absolute phase of the driving  eld. One can detect
this phase by simply measuring only the population of the
excited state. This leads to a phase-correlated  uctuation in
the excitation of a qubit and violation of the rule that the
degree of excitation depends only on the pulse area. We have
shown how the resulting error may be signi cant and must
be controlled for low-energy fast qubit operations.
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Limits to clock synchronization induced by completely dephasing communication channels
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Clock synchronization procedures are analyzed in the presence of imperfect communications. In this context
we show that there are physical limitations, which prevent one from synchronizing distant clocks when the
intervening medium is completely dephasing, as in the case of a rapidly varying dispersive medium.

DOI: 10.1103/PhysRevA.65.062319 PACS number~s!: 03.67.Hk, 06.30.Ft, 03.65.Ta
INTRODUCTION

There are two main kinds of protocols for achieving clock
synchronization. The  rst is the ‘‘Einstein synchronization
protocol’’ @1# in which a signal is sent back and forth be-
tween one of the clocks ~say Alice’s clock! and the other
clocks. By knowing the signal speed dependence on the in-
termediate environment, it is possible to synchronize all the
clocks with Alice’s. The other main protocol is the ‘‘Edding-
ton slow clock transfer’’ @2#: after locally synchronizing it
with hers, Alice sends a clock ~i.e., a physical system that
evolves in time with a known time dependence! to all the
other parties. The clock’s transfer must of course be perfectly
controllable, as one must be able to predict how the clock
will react to the physical conditions encountered en route,
which may shift its time evolution. Moreover, since any ac-
celeration of the transferred clocks introduces a delay be-
cause of relativistic effects, one must suppose that the trans-
fer is performed ‘‘adiabatically slowly,’’ i.e., such that all
accelerations are negligible. Notice that the above protocols
can be implemented using only classical resources: peculiar
quantum features such as entanglement, squeezing, etc., are
not needed. In what follows, such synchronization schemes
will be referred to as ‘‘classical protocols.’’

A recently proposed quantum clock synchronization pro-
tocol @3# was found @4# to be equivalent to the Eddington
slow clock synchronization. The application of entanglement
puri cation to improve quantum clock synchronization in the
presence of dephasing was attempted without success in @5#.
One might think there were other ways to implement a syn-
chronization scheme that employs quantum features such as
entanglement and squeezing, but this paper shows that this is
not the case. In fact, it will be shown that quantum mechan-
ics does not allow one to synchronize clocks if it would not
be possible to also employ one of the classical protocols,
which one can always employ if the channel is perfect or if
its characteristics are controllable. However, the relevance of
quantum mechanics to the clock synchronization procedures
should not be underestimated, since there exist schemes that
exploit quantum mechanics to achieve a ~classically not al-

*Email address: vittorio@mit.edu
†Email address: slloyd@mit.edu
‡ Email address: maccone@mit.edu
§ Email address: smshahri@mit.edu
1050-2947/2002/65~6!/062319~6!/$20.00 65 0623

2

lowed! increase in the accuracy of classical clock synchroni-
zation protocols, such as the one obtainable exploiting en-
tangled systems @6–8#.

The presented discussion also takes into account the pos-
sibility that the two distant parties who want to synchronize
their clocks ~say Alice and Bob! and who are localized in
space can entangle their systems by exchanging a certain
number of quantum states, and the possibility that they may
employ the ‘‘wave function collapse’’ @3#, through postselec-
tion measurements. The intuitive idea behind the proof is as
follows. To synchronize clocks, Alice and Bob must ex-
change physical systems such as clocks or pulses of light that
include timing information. But any effect, such as rapidly
varying dispersion, that randomizes the relative phases be-
tween energy eigenstates of such systems completely de-
stroys the timing information. Any residual information, such
as entanglement between states with the same energy, cannot
be used to synchronize clocks as shown below.

The paper is organized as follows. In Sec. I the analytic
framework is established. In Sec. II the clock synchroniza-
tion procedure is de ned and the main result is derived. In
particular, in Sec. II A the exchange of quantum information
between Alice and Bob is analyzed and in Sec. II B the
analysis is extended to include partial measurements and
postselection schemes in the synchronization process.

I. THE SYSTEM

Assume the following hypotheses that describe the most
general situation in which two distant parties communicate
through a noisy environment:

~1! Alice and Bob are separate entities that initially are
disjoint. They belong to the same inertial reference frame
and communicate by exchanging some physical system.

~2! The environment randomizes the phases between dif-
ferent energy eigenstates of the exchanged system while in
transit.

From these hypotheses it will be shown that Alice and
Bob cannot synchronize their clocks.

In Sec. I A we explain the  rst hypothesis by giving its
formal consequences. In Sec. I B we analyze the second hy-
pothesis and explain how it describes a dephasing channel.

A. First hypothesis

The  rst hypothesis states the problem and ensures that
initially Alice and Bob do not already share any kind of
©2002 The American Physical Society19-1
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system that acts as a synchronized clock. By separate we
mean that at any given time Alice and Bob cannot gain ac-
cess to the same degrees of freedom and there is no direct
interaction between Alice’s and Bob’s systems. This can be
described by the following properties of the system’s Hilbert
space and Hamiltonian. At time t the Hilbert space of the
global system can be written as

H5HA~ t ! ^ HC~ t ! ^ HB~ t !, ~1!

where the Hilbert space HA(t) refers to the system on which
Alice can operate at time t, HB(t) refers to Bob’s system,
and HC(t) describes the systems on which neither of them
can operate. The time dependence in Eq. ~1! does not imply
that the global Hilbert space changes in time, but it refers to
the possibility that a system that was previously under Al-
ice’s in uence has been transferred to Bob ~or vice versa!,
after a transient time at which it cannot be accessed by any of
them. Since information must be encoded into a physical
system, this mechanism describes any possible communica-
tion between them. Moreover, the Hamiltonian of the system
can be written as

H~ t !5HA~ t !1HB~ t !1HC~ t !, ~2!

where the time dependent HA(t) and HB(t) evolve the states
in HA and HB under the control of Alice and Bob, respec-
tively, while HC(t) evolves the system in transit between
them when it is not accessible. As a consequence of Eq. ~1!,
at time t the three terms on the right side of Eq. ~2! commute,
since they act on different Hilbert spaces. For the same rea-
son any operator under the in uence of Alice at time t com-
mutes with all Bob’s operators at the same time. A simple
example may help explain this formalism. Consider the situ-
ation in which the system is composed of three 1/2 spin
particles ~qubits!. A possible communication is then modeled
by the sequence

i.e., initially Alice’s Hilbert space HA contains spins 1 and 2,
and Bob owns only spin 3. Alice then encodes some infor-
mation on spin 2 ~eventually entangling it with spin 1!, and
sends it to Bob. There will be a time interval in which none
of them can access spin 2, and this situation corresponds to
having spin 2 belonging to HC . Finally, Bob receives spin 2,
and his Hilbert space HB describes both spins 2 and 3. No-
tice that the form of the Hamiltonian in Eq. ~2!, where no
interaction terms are present, allows each of them to act, at a
given time t, only on the spins that live in their own Hilbert
space at time t. An analogous description applies also to
more complicated scenarios, such as the exchange of light
pulses. In this case, causality constraints allow Alice and Bob
to act only on localized traveling wave modes of the electro-
magnetic  eld. Thus, also here, it is possible to de ne a
traveling system Hilbert space HC that factorizes as in Eq.
06231

2

~1!. From the above example, it is easy to see that in each
communication exchange it is possible to de ne a departure
time ts after which the sender cannot act anymore on the
system in transit, and an arrival time tr before which the
receiver cannot yet act on such system. It is between these
two times that the exchanged system belongs to HC .

In hypothesis 1 by initially disjoint we mean that Alice
and Bob do not share any information prior to the  rst com-
munication exchange. In particular this means that, before
they start to interact, the state of the system factorizes as

uC&5uf&A ^ uw&B , ~3!

i.e., the initial state is not entangled and they do not share
any quantum information. Here uf&A is the state of Alice’s
system evaluated at the time at which she starts to act, while
uw&B is the state of Bob’s system evaluated at the time at
which he starts to act. For ease of notation, the tensor prod-
uct symbol ^ will be omitted in the following except when
its explicit presence helps comprehension.

B. Second hypothesis

The second hypothesis imposes limitations to the infor-
mation retrieved from the exchanged signal. The dephasing
of the energy eigenstates describes the nondissipative noise
present in most nonideal communication channels and im-
plies a certain degree of decoherence in any quantum com-
munication between Alice and Bob. De ne ue ,d& as the
eigenstate relative to the eigenvalue \ve of the free Hamil-
tonian of the exchanged system C. The label d takes into
account possible degeneracy of such eigenstate. We assume
that during the travel, when neither Alice nor Bob can con-
trol the exchanged system in HC , the states ue ,d& undergo
the transformation

ue ,d&→e2iweue ,d& , ~4!

where the random phase weP@0,2p# is independent of d.
The channel dephasing arises when different energy eigen-
states are affected by different phase factors we . For this
reason the dephasing is characterized by the joint probability
function pe(we ,we8) that weights the probability that the en-
ergy levels ue ,d& and ue8,d& are affected by the phases we
and we8 , respectively. The parameter eP@0,1# measures the
degree of decoherence in the channel. In particular, e51
describes the case of complete decoherence, where the
phases relative to different energy eigenstates are completely
uncorrelated, namely pe(we ,we8) is a constant. On the other
hand, e50 describes the case of no decoherence, where each
energy eigenstate acquires the same phase, namely
pe(we ,we8)→d(we2we8)/2p . Written in the energy repre-
sentation, the channel density matrix %c evolves, using Eq.
~4!, as

%c5(
ee8

Pe%cPe8→(
ee8

e2i(we2we8)Pe%cPe8 , ~5!

where Pe5(due ,d&^e ,du is the projection operator on the
channel eigenspace of energy \ve . Taking into account the
9-2
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stochasticity of the evolution ~4!, the right-hand term of Eq.
~5! must be weighted by the probability distribution
pe(we ,we8), resulting in

%c→(
ee8

dee8
(e) Pe%cPe8 , ~6!

where

dee8
(e)

5E
0

2p

dweE
0

2p

dwe8pe~we ,we8!e2i(we2we8). ~7!

The width of the function dee8
(e) decreases with e , so that

dee8
(e50) is independent of e and e8 and the state is unchanged,

while dee8
(e51) is the Kronecker d and the state suffers from

decoherence in the energy eigenstate basis.
The dephasing process of Eq. ~4! can be derived assuming

a time dependent Hamiltonian HC(t)5HC
o 1HC8 (t), where

HC
o is the free evolution of the system with eigenstates ue ,d&

and HC8 (t) is a stochastic contribution that acts on the system
in a small time interval dt by shifting its energy eigenvalues
by a random amount ne , such that nedt5we . In fact, in the
limit dt→0, the evolution of the exchanged system is de-
scribed by

UC~ tr ,ts!5expH 2i(
e

Pe@ve~ tr2ts!1we#J , ~8!

where \ve is the energy eigenvalue of the exchanged system
relative to the eigenvector ue ,d& and tr and ts are the ex-
changed system’s arrival and departure times, respectively,
introduced in Sec. I A @9#. Notice that for we independent of
e ~which corresponds to the case e50), UC reduces to the
deterministic free evolution operator exp@2(i/\)HC

o (tr2ts)#,
apart from an overall phase term.

It might be interesting to consider the simpler case in
which the random phase we can be written as veu with the
random term u independent of e. In this case, Eq. ~8! sim-
pli es to

UC~ tr ,ts!5expF2
i
\

HC
o ~ tr2ts1u!G . ~9!

This last situation depicts the case in which all signals ex-
changed between Alice and Bob are delayed by an amount u .
As an example consider light signals that encounter a me-
dium with unknown ~possibly varying! refractive index or a
traveling ‘‘clock’’ that acquires an unpredictable delay. The
situation described by Eq. ~8! is even worse, since not only
may such a delay be present, but also the wave function of
the system is degraded by dispersion effects. In both cases,
the information on the transit time tr2ts that may be ex-
tracted from UC(tr ,ts) depends on the degree of randomness
of we . In particular, if we is a completely random quantity
~i.e., for e51), no information on the transit time can be
obtained.

This, of course, prevents the possibility of using classical
synchronization protocols, where unknown delays in either
0623129
the signal travel time or in the exchanged clock prove to be
fatal. One might think that by exploiting the apparently non-
local properties of quantum mechanics ~e.g., entanglement!,
these limits can be overcome. In the following sections we
will show that this is not the case.

II. CLOCK SYNCHRONIZATION

In this section we analyze the clock synchronization
schemes in detail and show the effect of a dephasing com-
munication channel.

How does synchronization take place? De ne t0
A and t0

B as
the initial times of Alice and Bob’s clocks as measured by an
external clock. ~Of course, since they do not have a synchro-
nized clock to start with, they cannot measure t0

A and t0
B .!

Alice and Bob will be able to synchronize their clocks if and
only if they can recover the quantity t0

A2t0
B , or any other

time interval that connects two events that happen one on
Alice’s side and the other on Bob’s side. Each of them has
access to the times at which events on her/his side happen
and can measure such events only relative to their own
clocks. We will refer to these quantities as ‘‘proper time in-
tervals’’ ~PTIs!. For Alice such quantities are de ned as t j

A

5t j
A2t0

A , where t j
A is the time at which the j th event took

place as measured by the external clock. Analogously for
Bob we de ne his PTI as tk

B5tk
B2t0

B . If Alice and Bob share
the data regarding their own PTIs, they cannot achieve syn-
chronization: they need also a ‘‘connecting time interval’’
~CTI!, i.e., a time interval that connects an event that took
place on Alice’s side with an event that took place on Bob’s
side as shown in Fig. 1.

Within this framework, consider the case of Einstein’s and
Eddington’s clock synchronizations. In the Einstein clock
synchronization the PTIs on Alice’s side are the two times at
which she sent and received back the signal she sends Bob.
Bob’s PTI is the time at which he bounces back the signal to
Alice. The CTI in this case measures the time difference

FIG. 1. Comparison between the times tA and tB of Alice and
Bob’s clocks. The center line represents the ‘‘absolute’’ time as
measured by an external clock. The small circles represent the times
of events that take place on Alice’s side, while the crosses represent
those on Bob’s side. The upper line is the time as measured by
Alice’s clock: she only has direct access to the proper time intervals
such as t j

A . Analogously, the lower line represents Bob’s proper
time. To achieve clock synchronization, Alice and Bob need to re-
cover a connecting time interval ~CTI! such as the one shown.
9-3
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between the events ‘‘Alice sends the signal’’ and ‘‘Bob
bounces the signal back.’’ The protocol allows Alice to re-
cover the CTI by simply dividing by two the time difference
between her two PTIs. The analysis of Eddington’s slow
clock transfer is even simpler. In this case Bob’s PTI is the
time at which Bob looks at the clock Alice has sent him after
synchronizing it with hers. The CTI is, for example, the time
difference between the event ‘‘Bob looks at the clock sent by
Alice’’ and ‘‘on Alice’s side it is noon’’: Bob can recover it
just looking at the time shown on the clock he received from
Alice.

In this paper we show that in the presence of a dephasing
communication channel ~as described in hypothesis 2!, there
is no way in which Alice and Bob may achieve a CTI. The
best that they can do is to collect a series of PTIs related to
different events and a collection of CTI transit times cor-
rupted by the noisy communication line: clock synchroniza-
tion is thus impossible.

A. Timing information exchange

In this section we analyze the exchange of quantum infor-
mation between Alice and Bob in the presence of dephasing.

Starting from the state uC& of Eq. ~3!, Alice’s and Bob
begin to act on their systems at two times ~that are not nec-
essarily the same!, in order to get ready for the information
transfer. Without loss of generality one can assume that these
two times coincide with their own time origins, i.e., t0

A and
t0

B . This means that, at those two times, they introduce time
dependent terms in the system Hamiltonian

HA
o →HA~ t ![HA

o 1HA8 ~ t2t0
A!,

~10!
HB

o →HB~ t ![HB
o 1HB8 ~ t2t0

B!,

where HA
o and HB

o are the free Hamiltonians of Alice’s and
Bob’s systems and HA8 (t2t0

A) and HB8 (t2t0
B) characterize

the most general unitary transformations that they can apply
to their systems. These last terms are null for t,t0

A and t
,t0

B ~when they have not yet started to act on their systems!.
Notice that according to Eq. ~1!, also the domains of HA(t)
and HB(t) may depend on time.

Suppose  rst that Alice is going to send a signal to Bob.
De ne ts

A the departure time at which Alice sends a message
to Bob encoding it on a system described by the Hilbert
space Hc . This implies that the system she has access to will
be Ha up to ts

A and Ha8 afterward, so that Ha5Ha8^ Hc . In
the same way, de ning tr

B as the arrival time on Bob’s side,
we may introduce a space Hb85Hb ^ Hc that describes the
Hilbert space on which Bob acts after tr

B . The label A on ts
A

refers to the fact that the event of sending the message hap-
pens locally on Alice’s side, so in principle she can measure
such a quantity as referred to her clock as the PTI ts

A5ts
A

2t0
A . Analogous consideration applies to Bob’s receiving

time tr
B and Bob’s PTI tr

B5tr
B2t0

B .
Consider the situation of Fig. 2 in which, for explanatory

purposes, t0
A,t0

B,ts
A,tr

B . Start from the group property of
the time evolution operators
062313
U~ t ,0!5U~ t ,t8!U~ t8,0!, ~11!

and the commutativity of the operators that act on the dis-
tinct spaces of Alice and Bob. It is easy to show that for ts

A

<t<tr
B the state of the system is given by

uC~ t !&5Ub~ t ,t0
B!Ua8~ t ,ts

A!Uc~ t ,ts
A!Ua~ ts

A ,t0
A!uC&,

~12!

where Ux(t ,t8) is the evolution operator in space Hx and

uC&[Ua~ t0
A,0!Ub~ t0

B,0!uC~0 !& ~13!

is the initial state as far as Alice and Bob are concerned,
de ned in Eq. ~3!. By hypothesis 1 this state does not contain
any usable information on t0

A and t0
B . In Eq. ~12! notice that

up to time ts
A the systems Hc and Ha8 are evolved together

by Ua . Analogously, for t>tr
B after Bob has received the

system Alice sent him, one has

uC~ t !&5Ua8~ t ,tr
B!Ub8~ t ,tr

B!uC~ tr
B!&. ~14!

Joining Eqs. ~12! and ~14!, it follows

uC~ t !&5Ub8~ t ,tr
B!Ub~ tr

B ,t0
B!Ua8~ t ,ts

A!Uc~ tr
B ,ts

A!

3Ua~ ts
A ,t0

A!uC&. ~15!

The time dependence of Alice’s and Bob’s Hamiltonians
~10! allows to write their unitary evolution operators as func-
tions of their PTIs, i.e.,

Ua~ t8,t9!5expQF2
i
\Et9

t8
dt@Ha

o 1Ha8 ~ t2t0
A!#G

5expQF2
i
\Et92t0

A

t82t0
A

dt@Ha
o 1Ha8 ~ t !#G

[Ūa~t8A,t9A!, ~16!

where a5a ,a8 and the arrow indicates time ordering in the
expansion of the exponential. Analogously

Ub~ t8,t9![Ūb~t8B,t9B!, ~17!

with b5b ,b8. Now Eq. ~15! can be rewritten as

FIG. 2. Alice sends Bob a message encoded into a quantum
system C at time ts

A ~her proper time ts
A) and Bob receives it at time

tr
B ~his proper time tr

B). During the travel the system C undergoes
dephasing.
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uC~ t !&5Ūb8~tB,tr
B!Ūb~tr

B,0!Ūa8~tA,ts
A!Uc~ tr

B ,ts
A!

3Ūa~ts
A,0!uC&. ~18!

Notice that the state uC(t)& in Eq. ~18! depends on t0
A , ts

A ,
t0

B , and tr
B through PTIs and through the term Uc(tr

B ,ts
A),

de ned in Eq. ~8!. As already discussed in the preceding
section, the random phase we present in Eq. ~8! prevents Bob
from recovering the CTI transit time tr

B2ts
A .

This example may be easily generalized to the case of
multiple exchanges. De ne th

A and th
B the times at which the

last change in Alice and Bob’s Hilbert space took place, i.e.,
the last time at which they either sent or received a signal.
Expressing it in terms of the PTIs th

A5th
A2t0

A and th
B5th

B

2t0
B , the state of the system is then

uC~ t !&5ŪA~tA,th
A!ŪB~tB,th

B!UC~ t ,th!uC̄& , ~19!

where A, B, and C refer, respectively, to the Hilbert spaces of
Alice, Bob, and the exchanged system at time t, and th is the
last time at which the Hilbert space of the exchanged system
was modi ed. As can be seen by iterating Eq. ~18!, the state
vector uC̄& in Eq. ~19! depends only on PTIs and on the
transit times of the systems Alice and Bob have exchanged.
To show that the state uC(t)& of Eq. ~19! does not contain
useful information to synchronize their clocks, suppose that
~say! Bob performs a measurement at time t. The state he has
access to is given by

rB~ t !5TrAC@ uC~ t !&^C~ t !u#

5ŪB~tB,th
B!TrAC@ uC̄&^C̄u#ŪB

† ~tB,th
B!, ~20!

where TrAC is the partial trace over HC and HA and where
the cyclic invariance of the trace and the commutativity of
operators acting on different Hilbert space has been used.
The state rB(t) does not depend on tA. The only informa-
tions relevant to clock synchronization ~that connect events
on Alice’s side to events on Bob’s side! that may be recov-
ered are the CTI transit times of the exchanged systems.
However, in the case of complete dephasing (e51), these
quantities are irremediably spoiled by the random phases as
discussed previously.

Up to now we have shown that by exchanging physical
systems and performing a measurement, Alice and Bob can-
not recover suf cient information to synchronize their clocks
if the environment is completely dephasing. In other words,
Alice can always encode some information on the system she
sends Bob, but any operation she does, will always be re-
ferred to her PTI and will thus be useless to Bob if he ignores
any CTI. That is equivalent to say that Alice may always
send Bob some photographs of her clock, but Bob will have
no use of them, since he cannot arrange them relative to his
own time axis. A better strategy could be to measure only
part of their systems and employ postselection schemes. As
will be shown in the following section, even in this case all
their efforts are in vain if hypothesis 2 applies.
062313
B. Postselection schemes

Allow Alice and Bob to make partial measurements on
their systems. The global system evolution is no longer uni-
tary, since the measurements will project part of the Hilbert
space into the eigenstates of the measured observable. The
communication of the measurement results permits the
implementation of postselection schemes. We will show that
also in this case, Alice and Bob cannot synchronize their
clocks in presence of dephasing in the communication
channel.

Using the Naimark extension @10#, one can assume the
projective-type measurement as the most general. Suppose
that Alice performs the  rst measurement at time tm

A on a part
of her system. De ne HA1

the Hilbert space that describes
such a system, so that HA5HA0

^ HA1
is the Hilbert space of

Alice. The state of the system after the measurement for t
.tm

A ~and before any other measurement or system ex-
change! is

uC~ t !&5U~ t ,tm
A !P~A1!uC~ tm

A !&, ~21!

where uC(tm
A )& is given in Eq. ~19! and the global evolution

operator is

U~ t ,tm
A !5ŪA~tA,tm

A !ŪB~tB,tm
A 2t0

B!UC~ t ,tm
A ! ~22!

with tm
A 5tm

A 2t0
A . In Eq. ~21! the measurement performed by

Alice on uC(t1
A)& is described by the projection operator

P~A1!uc&[
1

uu^cuf&A1
uu ~ uf&A1

^fu ^ 1A0
!uc&, ~23!

where 1A0
is the identity on HA0

, uf&A1
PHA1

is the eigen-
state relative to Alice’s measurement result f . Notice that
Eqs. ~21–23! take into account the postselection scheme in
which Alice communicates her measurement result to Bob,
since the operator U(t ,tm

A ) can depend on Alice’s measure-
ment result f . Using again the commutation properties be-
tween operators that act on different spaces, Eq. ~21! simpli-
 es to

uC~ t !&5ŪB~tB,th
B!UC~ t ,th!ŪA~tA,tm

A !

3P~A1!ŪA~tm
A ,th

A!uC̄&. ~24!

Equation ~24! shows that even though the partial measure-
ment introduces a nonunitary evolution term, this allows Al-
ice to encode in the state only information about her PTI tm

A

and nothing on the absolute time tm
A ~as measured by an

external clock! or on any CTI. In fact, the same consider-
ations of Eq. ~20! apply and no information relevant to clock
synchronization can be extracted from the state ~24!. The
formalism introduced also allows one to consider the situa-
tion in which Alice does not look at her results ~or does not
communicate them to Bob!: in this case, in Eq. ~24! one must
perform the sum on all the possible measurement results
weighted by their outcome probability.
9-51
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In the most general scenario Alice and Bob will perform
multiple partial measurements, communicate by exchanging
physical systems ~as analyzed in the preceding section!, and
again perform partial measurements. By iterating Eq. ~24!
one can show that none of these efforts allows them to ex-
tract any CTI.

Before concluding, it is worth commenting on how the
quantum clock synchronization scheme proposed in Ref. @3#
is related to our analysis. In Ref. @3#, the authors assume as a
starting point that Alice and Bob share an entangled state of
the form

ux&5(
a ,b

xabua&ub&, ~25!

where ua& and ub& are energy eigenstates of Alice’s and
Bob’s systems, respectively, and where the sum on the in-
dexes a and b runs over nondegenerate eigenstates. From the
considerations given in the present section, one can show
that, in the presence of a dephasing channel, such a state
cannot be obtained starting from the initial state given in Eq.
~3! without introducing some stochastic phases in it. For this
reason, it cannot be obtained without relaxing hypothesis 2:
such a protocol is then equivalent to classical protocols @4#.
062313
In fact, if one relaxes the hypotheses of channel dephasing,
then it is possible to also achieve classical clock synchroni-
zation.

CONCLUSION

In conclusion, a de nition of clock synchronization was
given and it was shown that, under some very general hy-
potheses that preclude the possibility of employing classical
protocols, such a synchronization is not possible. This does
not imply that quantum mechanics may not be exploited in
the clock synchronization procedures, but it may be limited
only to enhancing classical clock synchronization protocols
@6–8#. Indeed, we have shown elsewhere @8# that quantum
mechanics may be used to cancel the effect of dispersion in
clock synchronization.
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Abstract

We demonstrate how a natural rubidium vapor cell can efficiently filter out a pump beam that produces an Raman

gain in the stimulated Raman process at the D2 line of 85Rb. We observe a Raman gain of at least 12 dB in 85Rb when

the pump beam is detuned below the first transition in 85Rb, while being exactly on-resonance with the first transition in
87Rb. With a single pass through a second cell, we observe an attenuation of at least 30 dB of the incoming pump at

2 mW, while the probe remained unaffected. This filtering process is critical to the realization of a single photon

quantum memory based on vapor cells.

� 2004 Elsevier B.V. All rights reserved.

PACS: 03.67.)a; 32.30.)r; 03.75.F; 32.10.B

Keywords: Quantum; Memory; Atomic; Vapor; Ensambles; Raman
Recently, proposed experimental realizations of
quantum memories using halted light can be di-

vided into three categories. They use either Bose–

Einstein condensates [1,2], cryogenic solids [3] or

vapor ensembles [4]. Similar processes in vapor

ensembles have also been proposed to be used for

quantum teleportation [5–9]. For the BEC-based
* Corresponding author. Tel.: +1-84-74913055; fax: +1-84-

74914455.

E-mail address: a-heifetz@northwestern.edu (A. Heifetz).

0030-4018/$ - see front matter � 2004 Elsevier B.V. All rights reserv

doi:10.1016/j.optcom.2004.01.006

3

memories, the main physical limitation is that the
density is too low. In the case of the solid-state

experiments, a potentially important constraint is

the imprecision in the selection rules. The atomic

vapor may be the best compromise, since it does

not suffer from these two inconveniences. A pos-

sible quantum memory using an atomic vapor

would involve sending one probe photon from

an entangled photon pair [10] through a vapor
cell, and another photon from the same pair

through a different path. A pump pulse temporally
ed.

3
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superposed with the probe photon is sent through

the memory cell to perform a Raman transition in

a K system, and store the single photon informa-

tion in the atomic coherence of the two lower

levels of the K system. The retrieval operation can

be performed by applying a reverse pump pulse.
To test the photon storage, the second photon that

goes through the second path is sent through a

delay line to be compared later with the retrieved

photon. We have been investigating the realization

of such a quantum memory using rubidium. Our

setup is designed to pursue this approach using

two natural rubidium vapor cells (25.75% 87Rb

and 74.25% 85Rb isotopic concentrations). Our
goal is to use the Raman effect in 85Rb vapor to

store a single photon [8,12–14] and then to retrieve

the photon in a manner that validates the quantum

nature of the storage process. In order to detect

single photons at the Raman-shifted frequency,

one needs to suppress the pump while leaving the

Raman-shifted signal intact. The problem of pump

suppression is particularly formidable since pump
power on the order several hundreds of milliwatts

is typically used to produce the Raman effect in the

inhomogeneously broadened atomic vapor. Con-

sider for example the case where the stored photon

has a temporal duration of 100 ns. For a pump
Fig. 1. (a) Energy diagrams in 85Rb and 87Rb isotopes and stimulate

cidentally resonant with the 87Rb transition 5S1=2, F¼ 2! 5P3=2. (b) E

PBS2. The Fabry–Perot cavity is not shown.

34
power of 100 mW at 780 nm we need an extinction

ratio of about 130 dB. Typically, the pump and

probe polarizations are orthogonal, so that a po-

larizing beam splitter is used to separate them. But

the extinction ratio for this process is not good

enough. Another potential source of problem is
that the pump polarization is modified due to

optical activity in the vapor cell [7]. A usual way to

filter out one of two very closely separated fre-

quencies is by means of gratings or Fabry–Perot

cavities. Gratings are not well suited, because they

produce signal scattering. For a filter based on a

Fabry–Perot cavity, in order to prevent the con-

comitant attenuation of the weak field, one would
need a very high finesse, such as in the scheme used

in [9–11]. Such a cavity requires complicated

electronics for stabilization [15]. Furthermore, the

transmitted signal is still attenuated significantly,

which is highly undesirable in single photon ex-

periments, since it decreases the fidelity of the

measurement.

In this letter, we show a serendipitous method
to suppress the pump beam very efficiently. In

order to illustrate this method it is useful to de-

scribe the transitions used in the system. Specifi-

cally, we use the hyperfine sublevels of 85Rb for the

K system. The transitions are illustrated in
d Raman process on 85Rb. Notice that the pump field is coin-

xperimental Setup. The pump and probe beams are combined at
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Fig. 1(a). Notice that while the probe frequency is

always detuned by more than 1 GHz for both

rubidium isotopes, the pump frequency happens to

coincide with an absorption line of 87Rb. Ordi-

narily, this is a concern, since this would cause

undesirable pump attenuation. However, as de-
scribed later, we have found that it is possible to

observe strong Raman gain under this condition.

On the other hand, the presence of this absorption

line gives us a naturally occurring filter for the

pump, to be realized by a separate cell. In what

follows, first we show that the presence of pump

absorption does not prevent the Raman gain.

Then we show the efficiency of the filter effect.
The use of a vapor cell in general or neighbor-

ing isotopic transitions in rubidium in particular

for filtering is not new by itself. However, for the

objective at hand, the efficiency of the process is

not obvious a priori. This is because there is po-

tentially a wide range of detunings that can be

employed for the Raman gain process. For ex-

ample, if one were to use 87Rb transitions, with the
pump detuned below the first resonance or above

the second resonance, the pump would not be on

resonance with any transitions. While absorptive

filtering using another cell would still be possible,

the attenuation per pass would be rather small,

requiring so many passes through the cell that

residual scattering and attenuation from the cell

windows would become a dominant source of loss
for the probe. Even for 85Rb, there are many po-

tential choices of the pump frequency for which

the filtering process would be inefficient and inef-

fective. For example, if trapped atoms were used

instead of a vapor cell, the optimal detuning of the

pump below the first resonance, which depends on

the inhomogeneous broadening of the ensemble, is

likely to be less than 1 GHz due to the compara-
tively negligible Doppler width of the cold atoms.

Even for the hot atoms in the vapor, there is no

apparent reason to expect that the optimum Ra-

man gain should occur for a pump frequency that

is on resonance with the first 87Rb transition. In

our experiment, it is accidentally the case that the

optimum Raman gain occurs – for a wide range of

pump intensities – under precisely this condition.
This result also shows that all else being equal

(which may not necessarily be the case), one would
3

benefit from using 85Rb as the medium for the

quantum memory, as opposed to 87Rb.

The experiment was performed using a Ti:Sap-

phire laser pumped by an argon-ion laser. Each

vapor cell is a heat-pipe oven with a 5-cm active

length and a 0.5-cm diameter, containing natural
rubidium under a 30-mTorr vacuum maintained

by a mechanical pump. As shown in Fig. 1(b), the

Ti:Sapphire laser beam is divided by a polarizing

beam splitter (PBS1) into two orthogonally po-

larized beams. We produce the probe beam by red-

shifting a part of the pump beam by about 3.04

GHz (corresponding to the ground state hyperfine

splitting of 85Rb), using two cascaded 1.52 GHz
acousto-optical modulators (AOM), as shown in

Fig. 1(b). For diagnostic purposes, part of the

probe beam undergoes an additional frequency

shift with a 40-MHz AOM (the choice of 40 MHz

is due simply to the availability of an efficient

AOM at this frequency, and has nothing to do

with the fact that the hyperfine splitting frequency

happens to be about 40 MHz higher than 3 GHz,
of course). The remaining part of the probe is re-

combined with the pump on PBS2, so that the two

co-propagating beams are orthogonally polarized,

as required for efficient Raman transitions in this

medium. The collimated pump and probe beams

are then focused onto the middle of the first ru-

bidium vapor cell with a 50-cm focusing lens. As-

suming that the pump beam is Gaussian, its beam
spot size is estimated to be 68 lm, and maximum

intensity is about 16 kW/cm2. At the vapor cell

output, PBS4 transmits the probe beam and re-

flects the pump beam. Thus PBS4 filters out most

of the pump beam from the transmitted signal, and

allows for monitoring the linear absorption in the

vapor cell with the photo-detector 1 (PD1). A

small amount of the pump that leaks through
PBS4 is higher than expected for this PBS. This

happens because the pump beam undergoes po-

larization rotation in the vapor cell due to inten-

sity-induced birefringence in the rubidium atomic

vapor. While determining the Raman gain in the

first cell, the second cell is kept cold, so that the

part of the optical circuit enclosed in the dashed

square in Fig. 1(b) does not participate actively in
this part of the process. The oven of the first vapor

cell is kept at 170 �C. The Raman-amplified probe
5
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is mixed with the 40 MHz-shifted probe on a 50/50

non-polarizing beam splitter (BS2) to give a

40MHz beat signal on PD2. The signal level with

the pump blocked is recorded on the spectrum

analyzer (Fig. 2(a)). Unblocking the pump in-

creases the beat signal amplitude by 12 dB
(Fig. 2(b)). Maximum gain occurs when the

Ti:Sapphire laser frequency is detuned 1.22 GHz

away from the first 85Rb transition line

(F¼ 3! 5S3=2), which coincides with the 87Rb

F¼ 2! 5S3=2 transition (Fig. 1(a)). The gain is

maximum at the peak pump power mentioned

above, and is still observable even when the pump

is attenuated by 15 dB. Significantly, the location
Fig. 2. Stimulated Raman gain. The vertical axis (4 dB/div

scale) represents the amplitude of the beat signal of the probe

beam going through the cell with the 40 MHz-shifted reference

probe. The horizontal axis is on a 5 kHz/div frequency scale. (a)

Pump is off. The beating signal peak of 40 MHz is at )39 dBm,

or 6 dB above the noise level. (b) Pump is on. The beating signal

peak shows a Raman gain of 12 dB as compared to (a).

36
of the peak gain as a function of pump frequency

remains the same over this range of pump powers.

The Raman gain decreases gradually when the

Ti:Sapphire laser frequency is tuned away from the
87Rb, F¼ 2! 5S3=2 transition. The gain profile as

a function of frequency is asymmetric around the
peak, as documented previously for the Raman

gain process [12–14].

The second cell, operated with its oven at

160 �C, acts as the frequency filter to suppress the

residual pump co-propagating with the Raman

signal (dashed line inset in Fig. 1(b)). The pump

beam is seen to be strongly absorbed in the second

vapor cell because it is on-resonance with the 87Rb
F¼ 2! 5P3=2 transition line. To verify the ab-

sorption levels in spectrally resolved probe and

pump, we installed a Fabry–Perot cavity (not

shown in the figure) with 95% reflectivity mirrors

after the second vapor cell. When the pump fre-

quency is red-detuned by several GHz below the
87Rb 5S1=2, F¼ 2! 5P3=2 transition, we observe

both the pump and the probe in the Fabry–Perot
spectrum (Fig. 3(a)). As the laser frequency ap-

proaches the 87Rb 5S1=2, F¼ 2! 5P3=2 transition

frequency, the pump signal gradually decreases in

the Fabry–Perot spectrum. When the laser is ex-

actly on-resonance with the 87Rb transition, the

pump signals is strongly suppressed, while the
Fig. 3. (a) Pump and probe are spectrally resolved in the Fa-

bry–Perot cavity when the pump is far detuned from the 87Rb

5S1=2, F¼ 2! 5P3=2 transition. (b) Pump disappears from the

Fabry–Perot spectrum when it is on resonance with 87Rb 5S1=2,

F¼ 2! 5P3=2 transition.
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Fig. 4. Absorption increases with increasing oven temperatures

(T1 ¼ 110 �C, T2 ¼ 150 �C, T3 ¼ 160 �C). Maximum signal at-

tenuation of 30 dB is observed at the zero frequency, which

corresponds to the 87Rb 5S1=2, F¼ 2! 5P3=2 transition.
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probe signal remains unchanged (Fig. 3(b)). Next,

we blocked the probe beam (by turning off the 1.52

GHz AOMs), removed the Fabry–Perot cavity

and set up a detection scheme to quantify the

pump absorption level, starting with the tempera-

ture dependence of the absorption (Fig. 4). We

split the pump on a 50/50 non-polarizing beam

splitter (BS3) just before the entrance to the second
vapor cell. Half of the pump beam passes through

the second Rb vapor cell, while the other half is

frequency-shifted by 40 MHz by AOM4. The

beams are recombined on a 50/50 non-polarizing

beam splitter (BS5), and the 40 MHz beating sig-

nal detected by PD3 is displayed on the spectrum

analyzer. When the laser frequency is on-reso-

nance with the first 87Rb transition, the incident
pump beam at 2mW is absorbed down to the noise

level, or at least by 30 dB. In Fig. 4, we show the

absorption profiles as functions of the pump de-

tuning around the 87Rb 5S1=2, F¼ 2! 5P3=2 tran-

sition for different oven temperatures. The

maximum pump absorption increases with tem-

perature as expected. We could attain further at-

tenuation by multiple passes through the cell
because absorption in this regime is a linear pro-

cess. The number of passes necessary would be

only a few (say 4), so that degradation of the probe

from the AR-coated windows would be negligible.
37
We have demonstrated that the pump beam

that produces Raman amplification of the probe of

up to 12 dB in 85Rb of a natural Rb vapor cell can

be attenuated on a single pass by at least 30 dB

with 87Rb of another natural Rb vapor cell, while

the probe/signal is not affected. This makes a su-
per-efficient frequency selective filter that may be

very useful to simplify single photon experiments

involving Raman gains in rubidium vapor.
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Lorentz-invariant look at quantum clock-synchronization protocols based
on distributed entanglement
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Recent work has raised the possibility that quantum-information-theory techniques can be used to synchro-
nize atomic clocks nonlocally. One of the proposed algorithms for quantum clock synchronization ~QCS!
requires distribution of entangled pure singlets to the synchronizing parties @R. Jozsa et al., Phys. Rev. Lett. 85
2010 ~2000!#. Such remote entanglement distribution normally creates a relative phase error in the distributed
singlet state, which then needs to be puri ed asynchronously. We present a relativistic analysis of the QCS
protocol that shows that asynchronous entanglement puri cation is not possible, and, therefore, the proposed
QCS scheme remains incomplete. We discuss possible directions of research in quantum-information theory,
which may lead to a complete, working QCS protocol.

DOI: 10.1103/PhysRevA.65.052317 PACS number~s!: 03.67.Hk, 06.30.Ft, 95.55.Sh
I. INTRODUCTION: A QUANTUM PROTOCOL
FOR CLOCK SYNCHRONIZATION

Suppose a supply of identical but distinguishable two-
state systems ~e.g., atoms! is available whose between-state
transitions can be manipulated ~e.g., by laser pulses!. Let u1&
and u0& denote, respectively, the excited and ground states of
the prototype two-state system ~which span the internal Hil-
bert space H), and let the energy difference between the two
states be V ~we will use units in which \5c51 throughout
this paper!. Without loss of generality, we can assume

Ĥ0u0&50, Ĥ0 u1&5Vu1&, ~1!

where Ĥ0 denotes the internal Hamiltonian operator. Sup-
pose pairs of these two-state systems are distributed to two
spatially separated observers Alice and Bob. The Hilbert
space of each pair can be written as HA ^ HB , where ^

denotes the tensor product of the two vector spaces. A ~‘‘per-
fect’’! singlet is the speci c entangled quantum state in this
product Hilbert space given by

C5
1
A2

~ u0&A ^ u1&B2u1&A ^ u0&B). ~2!

@In what follows, we will omit tensor-product signs in ex-
pressions of the kind of Eq. ~2! unless required for clarity.#
Two important properties of the singlet state C are as fol-
lows. ~i! It is a ‘‘dark’’ state ~invariant up to a multiplicative
phase factor! under the time evolution Ût[exp(itĤ0), i.e.,
(Ût ^ Ût)C5eifC , where eif is an overall phase, and ~ii! it
is similarly invariant under all unitary transformations of the
form Û ^ Û , where Û is any arbitrary unitary map on H ~not
necessarily equal to Ût). Both properties are needed for the
quantum clock-synchronization ~QCS! protocol of Jozsa
et al. @1#, which assumes a supply of such pure singlet states
shared as a resource between the synchronizing parties Alice
1050-2947/2002/65~5!/052317~6!/$20.00 65 0523
3

and Bob ~in addition, Bob and Alice are assumed to be sta-
tionary with respect to a common reference frame!. Speci -
cally, consider the unitary ~Hadamard! transformation (p/2
pulse followed by the spin operator ŝz) on H given by

u0&°u1&[
1
A2

~ u0&1u1&),

u1&°u2&[
1
A2

~ u0&2u1&). ~3!

Unlike the states u0& and u1&, which are dark under time
evolution ~they only pick up an overall phase under Ût), the
states u1& and u2& are ‘‘clock states’’ ~in other words, they
accumulate an observable relative phase under Ût) because
of the energy difference V as speci ed in Eq. ~1!. Such states
can be used to ‘‘drive’’ precision clocks in the following
way: Start, for example, with an ensemble of atoms in the
state u1& produced by an initial Hadamard pulse at time t0,
and apply a second Hadamard pulse at a later time t01T .
This leads to a  nal state at t01T equivalent, up to an over-
all phase factor, to the state

cosS V

2 T D u0&1i sinS V

2 T D u1&. ~4!

Measurement of the statistics ~relative populations! of
ground vs excited atoms in the state Eq. ~4! then yields a
precision measurement of the time interval T; hence clock
functionality for u1&. @In practice, such measurements are
used to stabilize the frequency of a relatively noisy local
oscillator ~typically a maser!, whose ~stabilized! oscillations
then drive the ultimate clock readout.# Now, the invariance
of the pure singlet C @Eq. ~2!# under the Hadamard transfor-
mation Eq. ~3! can be seen explicitly in the alternative rep-
resentation
©2002 The American Physical Society17-1
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C5
1
A2

~ u2&A ^ u1&B2u1&A ^ u2&B). ~5!

Here, in Eq. ~5!, we have the crux of the QCS algorithm of
Ref. @1#: The dark, invariant state C , shared between Alice
and Bob, contains two clock states, one for each observer,
entangled in such a way as to ‘‘freeze’’ their time evolution.
As soon as Bob or Alice performs a measurement on C in
the basis $u1&,u2&%, thereby destroying the entanglement,
he or she starts these two dormant clocks ‘‘simultaneously’’
in both reference frames. Classical communications are then
necessary to sort out which party has the u1& clock and
which party has u2& . When used to stabilize identical quan-
tum clocks at each party’s location, these correlated clock
states then provide precise time synchrony between Bob and
Alice @2#.

It is important to emphasize that the nondegenerate nature
of the singlet state C @Eq. ~2!# is crucial for the QCS proto-
col to work. This is in complete contrast with other quantum-
information-theory protocols ~such as teleportation @3#, quan-
tum cryptographic key distribution @4#, and others! all of
which will work equally well with degenerate (V50) sin-
glets.

What is the signi cance of entanglement in the above
protocol? As has been pointed out by a number of authors
@5,6# following the original publication @1#, the QCS protocol
is completely equivalent to slow clock transport as long as
the entanglement in the singlet state Eq. ~2! is distributed by
transporting the entangled pairs kinematically to the synchro-
nizing parties Alice and Bob ~see also the discussion in Sec.
II below!. The potentially far-reaching consequences of the
QCS algorithm become clear when we realize that the physi-
cal transport of entangled constituents is by no means the
only way to distribute entanglement, though it is by far the
most obvious.

Notice that provided such a ‘‘nonlocal’’ method of en-
tanglement distribution is available to practically create pure
singlets of the form Eq. ~2!, the QCS algorithm gives a way
of synchronizing clocks across arbitrarily large distances, in-
dependent of the medium that separates the two atomic
clocks to be synchronized—so long as a classical communi-
cations link exists between the two synchronizing parties.
Since the synchrony transfer takes place instantaneously over
the quantum channel, no timing information needs to be
passed over the classical channel. This allows the protocol to
bypass a number of noise sources present on the classical
link ~such as an interceding medium with  uctuating index
of refraction!, which currently limit the accuracy of satellite-
to-satellite and satellite-to-ground synchronization protocols.

There are a number of ‘‘nonlocal’’ entanglement transfer
protocols that have been discussed in the theory literature,
and some of these are brie y considered in Sec. VI below.
Most of the rest of this paper, however, is devoted to the
analysis of what is perhaps the next most obvious method of
entanglement transfer: entanglement puri cation. The idea of
entanglement puri cation is to distribute the entangled state,
Eq. ~2!, to the synchronizing parties in some noisy manner
~possibly via simple kinematical transport!, and then to pu-
052313
rify the resulting imperfect singlet state by using some sort
of asynchronous puri cation protocol ~i.e., one that does not
rely on preestablished time synchrony between the local
clocks of Alice and Bob! which may involve ~asynchronous!
classical communication between the parties ~as well as the
loss of some fraction of the noisy singlets depending on the
 delity of the original transport and the yield of the puri -
cation protocol!. In this paper we will give an answer to the
fundamental question: Is asynchronous entanglement puri -
cation possible?

II. THE PRESKILL PHASE OFFSET

In principle, the QCS protocol as outlined in Sec. I is
rigorously correct and self-contained. If our Universe some-
how possessed primordial nondegenerate singlet states C
~leftover as ‘‘relics’’ from the Big Bang!, the protocol just
described would be perfectly suf cient to implement ultra-
precise clock synchronization between comoving distant ob-
servers. In practice, however, the QCS algorithm can reason-
ably be viewed as simply reducing the problem of clock
synchronization to the problem of distributing pure entangle-
ment to spatially separated regions of space-time. To see that
the latter is a nontrivial problem, consider the simplest way
one would attempt to distribute entanglement to remote re-
gions: start with locally created pairs of two-level systems
~atoms! in pure singlet states C of the form Eq. ~2!, and
transport the two subsystems separately to the locations of
Bob and Alice. The internal Hamiltonians of the two sub-
systems while in transport can be written in the form

ĤA5Ĥ01ĤA
ext, ĤB5Ĥ01ĤB

ext, ~6!

where ĤA
ext and ĤB

ext denote interaction Hamiltonians aris-
ing from the coupling of each subsystem to its external en-
vironment, and, unless the environment, which each sub-
system is subject to during transport is precisely controlled,
ĤA

extÞĤB
ext in general, leading to a relative phase offset in

the  nal entangled state. Furthermore, unless the world lines
of the transported subsystems are arranged to have precisely
the same Lorentz length ~proper time!, a further contribution
to this phase offset would occur due to the proper-time delay
between the two world-lines ~see also the discussion in Sec.
IV below!. The end result is an imperfect singlet state

Cd5
1
A2

~ u0&Au1&B2eidu1&Au0&B), ~7!

where d is a real phase offset that is  xed but entirely un-
known, which we call ‘‘the Preskill phase’’ in honor of its
original discoverer @6#. In general, coupling to the environ-
ment will lead to other errors such as bit  ips and decoher-
ence, resulting in a mixed state at the end of the transport
process. These kinds of errors, however, are correctable ~af-
ter restoring energy degeneracy to the qubit basis $u0&,u1&% if
necessary! by using standard entanglement puri cation tech-
niques @7#. The phase error in Eq. ~7!, however, is inextrica-
7-29
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LORENTZ-INVARIANT LOOK AT QUANTUM CLOCK- . . . PHYSICAL REVIEW A 65 052317
bly mixed with the synchronization offset between Alice and
Bob, as we will argue below, and it cannot be puri ed asyn-
chronously.

Although Cd is still a dark state under time evolution, it
no longer has the key property of invariance under arbitrary
unitary transformations Û ^ Û . In particular, an equivalent
form in terms of entangled clock states @such as in Eq. ~5!# is
not available for Cd @8#. Instead,

Cd5S 11eid

2A2 D ~ u2&Au1&B2u1&Au2&B)

1S 12eid

2A2 D ~ u1&Au1&B2u2&Au2&B), ~8!

and a measurement by Bob or Alice in the $u1&,u2&% basis
will leave the other party’s clock in a superposition of clock
states u1& and u2&, which, if Bob and Alice were to follow
the above QCS protocol blindly, effectively introduces an
~unknown! synchronization offset of 2d/V between them.

III. QCS AS TELEPORTATION OF CLOCKS

This connection between d and the time-synchronization
offset is much easier to understand by adopting a different
point of view for the QCS protocol: one which is based on
teleportation @3#. Accordingly, the essence of the QCS pro-
tocol can be viewed as the teleportation of clock states be-
tween Bob and Alice using the singlet states C ~or, in the
present case, the imperfect singlets Cd). More explicitly,
suppose Bob and Alice arrange, through prior classical com-
munications, the teleportation of a known quantum state
au0&B81bu1&B8 PHB8 from Bob to Alice via the singlet
Cd . Since the teleported state, as well as Bob’s Bell-basis
states @3#

C6[
1
A2

~ u0&Bu1&B86u1&Bu0&B8),

F6[
1
A2

~ u0&Bu0&B86u1&Bu1&B8) ~9!

are, in general, time dependent, the standard teleportation
protocol needs to be slightly modi ed in the following way.
The parties need to agree on a time, which we may take
without loss of generality to be tB50 as measured by Bob’s
local clock, at which the following three actions will be per-
formed instantaneously by Bob.

~i! Prepare an ancillary two-state system B8 in the known
quantum state au0&B81bu1&B8 , where a and b are complex
numbers previously agreed on by the two parties.

~ii! Select a speci c singlet Cd as in Eq. ~7!, and construct
a Bell basis for HB ^ HB8 that has the form Eq. ~9! at tB
50.

~iii! Perform a measurement in this basis and communi-
cate its outcome to Alice through a classical channel. Upon
receipt of this outcome, Alice is then to rotate the ~collapsed!
052314
quantum state of her half of the singlet Cd ~now a vector in
the Hilbert space HA) by one of the four unitary operators

M̂ C65S 61 0
0 2e2iVtAD ,

M̂ F65S 2e2iVtA 0
0 61 D , ~10!

depending on whether the transmitted outcome of Bob’s
measurement is one of C1,C2,F1 or F2. Here tA denotes
Alice’s proper time ~as measured by her local clock! at the
moment she performs her unitary rotation. Now let the ~un-
known! synchronization offset between Bob and Alice be t ,
so that tB5tA1t . It is easy to show that the state teleported
to Alice under this arrangement will have the form

au0&A1ei(2Vt1d)bu1&A, ~11!

as obtained by Alice immediately following her unitary op-
eration ~one of M̂ C6, M̂ F6 @Eqs. ~10!#! on HA .

A number of key results can now be easily read out from
Eq. ~11!.

~1! If d50, i.e., under the same assumption as in the
original QCS protocol @1# that the shared singlet states are
pure, the time-synchronization offset t can be immediately
determined by Alice ~recall that a and b are known to both
parties!. Hence, the synchronization result of the QCS pro-
tocol can equivalently be achieved through teleportation.

~2! Conversely, if t50, i.e., if Bob and Alice have their
clocks synchronized to begin with, or if V50, i.e., if the
qubits spanning the local Hilbert spaces HA and HB are de-
generate, then d can be immediately determined by Alice.
Hence, puri cation of the phase-offset singlet Cd is possible
under either of these two conditions.

~3! If, on the other hand, none of the quantities V ,t , and
d vanish, then the two unknowns t and d are inextricably
mixed in the only phase observable 2Vt1d , and asynchro-
nous puri cation cannot be achieved via teleportation.

This last conclusion can be greatly clari ed and strength-
ened by a Lorentz-invariant formulation of the above telepor-
tation protocol ~which, as we just argued, is equivalent to the
original QCS!, and it is this formulation we will turn to next.

IV. LORENTZ-INVARIANT ANALYSIS OF QCS

The key ingredient in any relativistic discussion of
quantum-information theory is the space-time dependence of
the qubit states. The ‘‘true’’ Hilbert space to which the quan-
tum state of a singlet belongs is, accordingly, L2(R4) ^ H A
^ L2(R4) ^ HB , where each L2(R4) is supposed to account
for the space-time wave function of each two-state system in
the entangled pair @for simplicity ~but without any loss of
generality!, we consider only scalar ~as opposed to spinor!
qubits#. We will assume in what follows that background
space-time is  at ~Minkowski!, and that the space-time de-
pendence of each system’s wave function can be approxi-
mated by that of a plane wave. In a more careful treatment,
7-30
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plane waves should be replaced by localized, normalizable
wave packets.

We emphasize that a fully relativistic theory of quantum
information would have to be formulated in the framework
of relativistic quantum  eld theory. Since such a full- edged
formalism does not yet exist, we will con ne our attention to
a naive, ‘‘ rst-quantized’ ’ analysis, which is adequate for a
qualitative understanding of the role of Lorentz invariance in
QCS.

Denote the four-velocities of Alice and Bob by uA and
uB , respectively, so that uA•uA5uB•uB521 @we will adopt
the sign convention in which Minkowski metric on R4 has
the form h52dt ^ dt1dx ^ dx1dy ^ dy1dz ^ dz , and use
the abbreviation a•b to denote h(a ,b) for any two four-
vectors a and b]. The wave four-vectors of Alice’s and Bob’s
atoms then have the form

k0
J5m0uJ , k1

J5~m01V!uJ , ~12!

where m0 is the ground-state rest mass of each ~identical!
two-level atom, and k0

J and k1
J denote the wave vectors

corresponding to the ground and excited states of the atoms,
respectively, where J5A ,B . The plane-wave space-time de-
pendence of the wave functions corresponding to the ground
and excited states of each of the atoms can then be written in
the form

u0&J→eik0
J•xu0&J , u1&J→eik1

J•xu1&J , ~13!

where J5A ,B , and x denote an arbitrary point ~event! in
space-time ~a four-vector!. Simple algebra then shows that,
up to an overall phase factor ~which can always be ignored!,
the wave function corresponding to the singlet state Eq. ~7!
can be expressed as a two-point space-time function of the
form

Cd~x1 ,x2!5u0&Au1&B2eiFd(x1 ,x2)u1&Au0&B , ~14!

where x1 and x2 denote space-time points along the world
lines of Alice and Bob, respectively, and Fd(x1 ,x2) is the
Lorentz-invariant two-point phase function

Fd~x1 ,x2![V~uA•x12uB•x2!1d . ~15!

In the important special case where uA5uB5u , i.e., when
Alice and Bob are comoving ~and it makes sense to synchro-
nize their clocks!, Fd takes the simpler form

Fd~x1 ,x2!5Vu~x12x2!1d . ~16!

In the comoving case, Eq. ~16!, ~when uA5uB), the singlet
wave function Cd(x1 ,x2) is invariant under arbitrary Lor-
entz transformations including translations. This is in con-
trast with the general case, where the phase function
Fd(x1 ,x2) @Eq. ~15!# does not have translation invariance.
This dependence on the choice of origin of coordinates is a
manifestation of the fact that Cd is not a dark state unless
uA5uB .
0523141
V. DISCUSSION: IS ASYNCHRONOUS ENTANGLEMENT
PURIFICATION POSSIBLE?

The teleportation protocol of Sec. III ~which is equivalent
to the original QCS protocol of @1#! demonstrates that as
long as x1 and x2 are timelike separated events in space time,
the relative phase Fd(x1 ,x2) can be directly observed by
Alice and Bob via quantum measurements followed by clas-
sical communication of the outcomes. An observation of
Fd(x1 ,x2) would commence by the selection by Alice and
Bob of space-time points x1 and x2 along their respective
world lines at which they wish to measure this invariant
phase function. Bob then would carry out his part of the
teleportation protocol of Sec. III at his proper time corre-
sponding to the event x2, and broadcast the outcome to Alice
along a nonspacelike communication path that reaches Alice
before x1. Alice would subsequently apply her unitary rota-
tion @Eqs. ~10!# sharp at her proper time corresponding to the
event x1. The resulting teleported state then has the form Eq.
~11!, where the relative phase is precisely Fd(x1 ,x2). Con-
versely, since the wave function contains all knowledge that
can ever be obtained about a quantum system, the only ~clas-
sical! observable associated with the singlet state Cd that
contains any information about d is Fd(x1 ,x2).

Focusing now on the comoving case uA5uB , the above
fact implies that the phase offset d cannot be observed in
isolation; only the combination two-point function d
1Vu(x12x2) @Eq. ~16!# is accessible to direct measure-
ment. On the other hand, clock synchronization between Bob
and Alice is equivalent to identi cation of pairs of events
(x1

(i) ,x2
(i)) such that u(x1

(i)2x2
(i))50. Therefore, by making a

sequence of measurements of the relative phase function
Fd(x1 ,x2), Alice and Bob can use the singlets Cd as a
shared quantum-information resource to ~i! synchronize their
clocks if d50 , and ~ii! measure and purify d if they have
synchronized clocks to start with. In the general case of an
unknown d and an unknown time-synchronization offset,
however, d by itself is not observable, and, consequently, Cd
cannot be puri ed without  rst establishing time synchrony
between the two parties.

Note that this argument is completely independent of the
particular protocol that may be used to purify the entangle-
ment Eq. ~7!. Instead, the argument relies entirely on the
nature of the space-time wave function describing an en-
tangled pair, and this ‘‘universality’’ is its primary signi -
cance. The crucial observation is that the invariant two-point
phase function Fd(x1 ,x2) is the only observable in the sin-
glet state Eq. ~7!, and this function depends not only on the a
priori relative phase d , but also, through its dependence, on
both x1 and x2, on the a priori time-synchrony information
between Alice and Bob. Since the relative-phase information
cannot be separated from time-synchrony information as
long as the qubits remain nondegenerate, no protocol that
does not rely on prior time synchrony in an essential way can
purify the entanglement so as to distill pure (d50) en-
tangled pairs.

VI. CONCLUSIONS AND FUTURE WORK

By using entangled ~nondegenerate! qubits as a resource
shared between spatially separated observers, the QCS pro-
7-4
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tocol as reformulated above in Secs. III–V allows the direct
measurement of certain nonlocal, covariant phase functions
on space-time. Moreover, this functionality of the protocol is
straightforward to generalize to many-particle entanglement
@9#. While these results give hints of a profound connection
between quantum information and space-time structure, they
fall just short of providing a practical clock-synchronization
algorithm because of the uncontrolled phase offsets @e.g, d in
Eq. ~7!# that arise inevitably during the distribution of en-
tanglement. Since, as we showed above, these phase offsets
cannot be puri ed asynchronously after they are already in
place, a successful completion of the ~singlet based! QCS
algorithm would need some method of entanglement distri-
bution that avoids the accumulation of relative phase offsets.
We believe a complete clock-synchronization algorithm
based on quantum information theory will likely result from
one of the following approaches.

‘‘Phase-locked’’ entanglement distribution. It may be pos-
sible to use the inherent nonlocal ~Bell! correlations of the
singlet states ~which remain untapped in the current QCS
protocol!, and implement a ‘‘quantum feedback loop,’’
which, during entanglement transport, will help keep the
phase offset d vanishing to within a small tolerance of error.
For example, states of the form

1
A2

~ u0&Au1&A8u1&Bu0&B82u1&Au0&A8u0&Bu1&B8), ~17!

where two pairs of atoms ~the primed and the unprimed pair!
are entangled together, are not only dark but also immune to
phase offsets during transport of the pairs to Alice and Bob
~provided both pairs are transported along a common world
line through the same external environment!. Can such
phase-offset-free states be used to control the purity of sin-
glets during transport?

Entanglement distribution without transport. Physically
moving each prior-entangled subsystem to its separate spatial
location is not the only way to distribute entanglement. An
intriguing idea, recently discussed by Cabrillo et al. @10#,
proposes preparing two spatially separated atoms in their
long-lived excited states u1&Au1&B . A single-photon detector,
which cannot ~even in principle! distinguish the direction
from which a detected photon arrives, is placed halfway be-
tween the atoms. When one of the atoms makes a transition
to its ground state, and the detector registers the emitted
photon, the result of its measurement is to put the combined
two-atom system into the entangled state

1
A2

~ u0&Au1&B1eifu1&Au0&B), ~18!

where f is a random phase. Is there a similar procedure
~based on quantum measurements rather than physical trans-
port! that creates entanglement with a controlled rather than
random phase offset f?

Another method of entanglement distribution without
transport, recently investigated in detail by Haroche and co-
052314
workers @11# is ~in very rough outline! the following: Start
with a single-mode cavity whose excitation frequency is
tuned to V . Send the pair of atoms A and B into the cavity
one after the other, with atom B  rst. Initially, both atoms
and the cavity are in their ground states

u0&A ^ u0&B ^ u0&EM , ~19!

where u0&EM denotes the vacuum state of the cavity. After
atom B is in the cavity, apply a p/2 pulse on it, which trans-
forms the state Eq. ~19! into

1
A2

u0&A ^ ~ u0&B ^ u1&EM2u1&B ^ u0&EM). ~20!

When both atoms are in the cavity, apply a second, p pulse,
this time on the atom A, thereby transforming the state Eq.
~20! into

1
A2

~ u1&A ^ u0&B2u0&A ^ u1&B) ^ u0&EM , ~21!

which, for the atom pair A and B, is in the desired form Eq.
~2! up to an overall phase factor. Since at each step the over-
all quantum state ~of atoms and the electromagnetic  eld ! is
dark, no relative phase errors can creep in, and pure en-
tanglement distribution is achieved between atoms A and B.
Can this method be adapted to design a practical entangle-
ment transfer protocol between distant pairs of atoms using a
controlled cavity environment?

Avoiding entanglement distribution altogether. Can clas-
sical techniques of clock synchronization be improved in ac-
curacy and noise performance by combining them with tech-
niques from quantum-information theory, which do not
necessarily involve ~nondegenerate! entanglement distribu-
tion? A recent proposal in this direction was made by
Chuang in @12#.

After this paper was submitted for publication, further
ideas utilizing quantum entanglement without entanglement
distribution to improve the accuracy of classical Einstein
synchronization have been proposed in Refs. @13–15# ~see
also @16# for an overview!.
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Quantum Entanglement of Moving Bodies
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We study the properties of quantum entanglement in moving frames, and show that, because spin and
momentum become mixed when viewed by a moving observer, the entanglement between the spins of a
pair of particles is not invariant. We give an example of a pair, fully spin entangled in the rest frame,
which has its spin entanglement reduced in all other frames. Similarly, we show that there are pairs
whose spin entanglement increases from zero to maximal entanglement when boosted. While spin and
momentum entanglement separately are not Lorentz invariant, the joint entanglement of the wave
function is.

DOI: 10.1103/PhysRevLett.89.270402 PACS numbers: 03.65.Ud, 03.30.+p, 03.67.–a
understand all those processes that might affect quantum
entanglement (in particular, those processes that lead

p

j�pj
�

jpj
: (7)
Mostly, theories in physics are born out of necessity, but
not always. The thermodynamics of moving bodies, for
example (relativistic thermodynamics), was a hotly con-
tested topic without resolution [1–4] (but see [5]) mostly
because no experiment required it. As a side effect, it was
learned that the temperature concept in relativistic ther-
modynamics is ambiguous simply because radiation that
is perfectly blackbody in an inertial frame is not thermal
if viewed from a moving frame [5,6]. This is an inter-
esting result for information theory [7], however, since if
probability distributions can depend on the inertial
frame, then so can Shannon entropy and information.
Even more interesting are the consequences for quantum
information theory, where quantum entanglement plays
the role of the primary resource in quantum computation
and communication [8]. Relativistic quantum informa-
tion theory may become a necessary theory in the near
future, with possible applications to quantum teleporta-
tion [9], entanglement-enhanced communication [10],
quantum clock synchronization, and quantum-enhanced
global positioning [11].

Entanglement is a property unique to quantum systems.
Two systems (microscopic particles or even macroscopic
bodies [12]) are said to be quantum entangled if they are
described by a joint wave function that cannot be written
as a product of wave functions of each of the subsystems
(or, for mixed states, if a density matrix cannot be written
as a weighted sum of product density matrices). The
subsystems can be said not to have a state of their own,
even though they may be arbitrarily far apart. The en-
tanglement produces correlations between the subsystems
that go beyond what is classically possible [13]. It is this
feature that enables quantum communication protocols
such as teleportation and superdense coding. However,
the preparation, sharing, and purification of entanglement
is usually a complicated and expensive process that re-
quires great care. It is therefore of some importance to
02=89(27)=270402(4)$20.00
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to decoherence). It was shown recently that Lorentz
boosts can affect the marginal entropy of a single quan-
tum spin [14]. Here, we determine that the entanglement
between two systems depends on the frame in which this
entanglement is measured.We show that a fully entangled
spin-1=2 system (a Bell state) loses entanglement if ob-
served by a Lorentz-boosted observer. Thus, Lorentz
boosts introduce a transfer of entanglement between de-
grees of freedom, that could be used for entanglement
manipulation. While the entanglement between spin or
momentum alone may change due to Lorentz boosts, the
entanglement of the entire wave function (spin and mo-
mentum) is invariant.

In order to define the momentum eigenstates for a
massive particle with spin, we start by defining the rest
frame eigenstates,

P�j0�i � j0�ip�0 ; (1)

J2j0�i � j0�is�s� 1�; (2)

Jzj0�i � j0�i�; (3)

where p�0 � �m; 0�, s is the total angular momentum of
the particle, and � is the z component of angular momen-
tum. Since the particle is at rest, s and � are the spin and
the z component of the spin for the particle, respectively.

We define a momentum state by acting on the rest
frame state with a pure Lorentz boost

jp�i � L��p�j0�i; (4)

where L��p� is a boost such that

L��p��m; 0� � �

������������������
p2 �m2

q
;p�; (5)

where the rapidity, �p, is given by

sinhj�pj �
jpj
m

(6)

� p
 2002 The American Physical Society 270402-1
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FIG. 1. Circuit diagram for a Lorentz boost on a state with
spins in a j��i state. Lines representing momentum degrees of
freedom are bold.                                                                                
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In what follows, we use p to represent the 4-vector
�

������������������
p2 �m2

p
;p� unless it is ambiguous.

The effect of an arbitrary Lorentz transformation �
(rotation and boost) on a momentum eigenstate is

�jp�i � �L��p�j0�i (8)

� L���p�L���p�
�1�L��p�j0�i: (9)

Since L���p�
�1�L��p� leaves 0 invariant, it must be a

rotation. These rotations are called the Wigner rotations
R��;p�, and they act only on the rest frame spin compo-
nent �. Hence, we can write

�jp�i �
X
�0

j�p�0iD�s�
�0;��R��;p��; (10)

where D�s�
�0;��R� is the spin s representation of the rotation

R. Here, we restrict ourselves to s � 1=2, but the general-
ization to larger spins is straightforward. For a review of
momentum eigenstates and spin, see [15]. Since a local
unitary transformation will not affect any measure of en-
tanglement [16,17], the unitary transformation � on the
infinite dimensional space of momentum and rest frame
spin will not change the entanglement between two par-
ticles, provided we do not trace out a part of the wave
function. However, in looking at the entanglement be-
tween spins, tracing out over the momentum is implied.

The wave function for two massive spin-1=2 particles
can be written as

j	AA0BB0 i �
ZZ X

��

g���p;q�jp�iAA0 jq�iBB0eddpeddq; (11)

where eddp and eddq are the Lorentz-invariant momentum
integration measures given by

eddp �
d3p

2
������������������
p2 �m2

p ; (12)

and the functions g���p;q� must satisfyX
��

ZZ
jg���p;q�j2eddpeddq � 1: (13)

To an observer in a frame Lorentz transformed by ��1,
the state j	AA0BB0 i appears to be transformed by � 
�.
Using Eq. (10), and a change of variables for p, q, �, and
�, g���p;q� goes through the following transformation:

g���p;q� !
X
�0�0

U���1p�
�;�0 U���1q�

�;�0 g�0�0 ���1p;��1q�; (14)

where we defined

U�p�
�;�0 � D�1=2�

�;�0 �R��;p�� (15)

for compactness of notation. The Lorentz transformation
can be viewed as a unitary operation, R��;p�, condi-
tioned on p acting on the spin, followed by a boost p !
                                                                                            45
�p on the momentum represented by the circuit diagram
in Fig. 1.

By writing j	AA0BB0 i as a density matrix and tracing
over the momentum degrees of freedom, the entangle-
ment between A andB (that is, between the spin degrees of
freedom) can be obtained by calculating Wootters’s con-
currence [18,19]

C��AB� � maxf�1 � �2 � �3 � �4; 0g; (16)

where f�1; �2; �3; �4g are the square roots of the eigenval-
ues of the matrix �AB~��AB, and ~��AB is the ‘‘time-reversed’’
matrix [18]

~��AB � ��y 
 �y��
?
AB��y 
 �y�: (17)

The first step in calculating the Lorentz-transformed
concurrence is to find an explicit form forU�p�

�;�0 . Since any
Lorentz transformation � can be written as a rotation
R��� followed by a boost L��� [see also Eq. (8)], it is clear
that, for a pure rotation, U�p�

�;�0 does not depend on p.
Hence, tracing over the momentum after a rotation will
not change the concurrence. Therefore, we can look only
at pure boosts, and without loss of generality we may
choose boosts in the z direction. Writing the momentum
4-vector in polar coordinates as

p � �E;p cos��� sin���; p sin��� sin���; p cos����; (18)

we obtain

U�p� �

�
� �e�i�

��ei� �

�
; (19)

where

� �

���������������
E�m
E0 �m

r �
cosh



�
2

�
�
p cos���
�E�m�

sinh



�
2

��
; (20)

� �
p sin���������������������������������������

�E�m��E0 �m�
p sinh



�
2

�
; (21)

and

E0 � E cosh��� � p cos��� sinh���: (22)
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Here we use � � j�j as the rapidity of the boost in the z
direction.

For momentum distributions in this Letter, we use a
‘‘relativistic Gaussian’’ with width �r,

f�p� �

���������������������������������������
1

N��r�
exp�



p2

2�2
r

�s
; (23)

which differs from the standard Gaussian only in the
normalization N��r�, chosen in accordance with (12).

For a spin Bell state j��i with momenta in a product
Gaussian, we have

g���p;q� �
1���
2

p #��f�p�f�q�: (24)

Boosting this state, we move some of the spin entangle-
ment to the momentum. Tracing out the momentum from
the Lorentz-transformed density matrix destroys some of
the entanglement, and, hence, the concurrence in the
moving frame diminishes. The change in concurrence
depends only on the ratio �r=m and �. Figure 2 shows
the concurrence vs rapidity �, for �r=m � 1 and 4. The
decrease from the maximum value (the concurrence is
one for Bell states) documents the boost-induced deco-
herence of the spin entanglement.

In the limit �! 1 (boost to the speed of light), the
concurrence saturates, i.e., it reaches a constant value that
depends on the mass of the particles and the shape of the
momentum distribution. In this particular example, it
depends on the ratio �r=m. The saturation level decreases
as �r=m increases until �r=m ’ 3:377 when the satura-
tion level becomes zero. Note that in the limit of ‘‘pure’’
momentum states (plane waves), the spins undergo local
unitary rotations but entanglement transfer does not oc-
cur, as was observed in [20,21]. The reason for the satu-
ration can be seen by examining (19) in the limit �! 1,
FIG. 2. Spin concurrence as a function of rapidity, for an
initial Bell state with momenta in a product Gaussian. Data is
shown for �r=m � 1 and �r=m � 4.
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lim
�!1

� �

����������������������������������
E�m

2�E� p cos����

s 

1�

p cos���
E�m

�
; (25)

lim
�!1

� �
p sin������������������������������������������������������

2�E�m��E� p cos����
p : (26)

The parameter � represents the amount of rotation due to
the boost. If we maximize �with respect to �, we obtain

�!
p=m

1�
������������������������
1� �p=m�2

p ; (27)

which is a monotonically increasing function of p=m. For
a particle of mass m and magnitude of momentum p,
Eq. (27) represents the maximal amount of rotation due to
a boost. By increasing �r=m in our example, we effec-
tively increase this limit for �, and, hence, how much we
can alter the concurrence. Note that since for large p=m
the rotation � tends to one, the Lorentz transformation is
equivalent to a conditional spin flip in this regime.

If boosts can disentangle spins, can they transfer en-
tanglement from the momentum degrees of freedom to an
unentangled spin wave function? Indeed this is possible.
One way to achieve this is to take any of the resulting
states after boosting the state in Eq. (24) and apply the
inverse boost to increase concurrence to one. Note that
the increase in spin entanglement comes at the expense of
a loss of momentum entanglement, since the entangle-
ment between all degrees of freedom (spin and momen-
tum) is constant under Lorentz transformations.

Simply reversing a previously applied Lorentz transfor-
mation as in the last example is not a very satisfying way
to create entanglement. Is there a way we could create an
unentangled state in the laboratory frame that would ap-
pear entangled to a moving observer? Consider the state

j	AA0BB0 i �
1���
2

p �jp;�pij��i � jp?;�p?ij��i�; (28)

where p and p? are both in the x, y plane, have the same
magnitude p, and are perpendicular. We could imagine
such a state arising from a particle decay where the
products are restricted to movement in the x or y axes
with a conditional �z gate on the perpendicular direction.
The reduced density matrix �AB for this wave function
is separable, and its concurrence vanishes. However, tak-
ing the large p limit in Eqs. (25) and (26) and choosing�
and � appropriate for p and p? in the x and y directions,
respectively, one can show that for a large boost in the z
direction both j��i and j��i are transformed into the
j �i state and, hence, the spins are maximally entangled
in this reference frame. In fact, the concurrence as a
function of p and � is given by

C��AB� �
p2�cosh2��� � 1�

�
���������������
1� p2

p
cosh��� � 1�2

; (29)

when choosing m � 1. Note that the concurrence is
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greater than zero whenever p and � are nonzero, and as p
and � become large the concurrence tends to one. So, if
we restrict ourselves to spin measurements, an observer in
the rest frame of the decay particle cannot use entangle-
ment as a resource (e.g., for teleportation, superdense
coding, etc.) while the moving observer can. Such a
purification of spin entanglement is not always possible,
however, and the following theorem characterizes the
limitations.

Theorem.—The entanglement between the spin and
momentum parts of a pure state wave function,
j	AA0BB0 i, must be nonzero to allow the spin entanglement
to increase under Lorentz transformations.

Proving the contrapositive, starting with a product
state of the form

j	AA0BB0 i � j iA0B0 j�iAB; (30)

and applying boosts of the form � 
� or even � 
�0,
we obtain

�AB �
X
i

piUi
A 
 V

i
Bj�ih�jU

iy
A 
 ViyB ; (31)

where Ui
A and ViB are unitary operators and the sum

P
i pi

will be an integral for certain states j i.We can now plug
Eq. (31) into any entanglement monotone E��� and obtain
the inequality,

E��AB� �
X
i

piE�Ui
A 
 V

i
Bj�i� (32)

�
X
i

piE�j�i� (33)

� E�j�i�; (34)
where inequality (32) comes from the definition of an
entanglement monotone [22]. Hence, for states of the
form Eq. (30), the spin entanglement can only decrease
after a Lorentz transformation. �

Note that this theorem does not hold if arbitrary uni-
tary operations are applied to a particle’s spin and mo-
mentum degrees of freedom (for instance, a swap gate),
but it does hold for the entire class of unitaries realized by
Lorentz transformations.

We have investigated the properties of moving en-
tangled pairs of massive particles. Because Lorentz
boosts entangle the spin and momentum degrees of free-
dom, entanglement can be transferred between them. This
is true for single particles [14], and we have shown here
that it is true for pairs, where the Lorentz boost affects the
entanglement between spins. Quite generally, we can say
that fully entangled spin states will (depending on the
initial momentum wave function) most likely decohere
due to the mixing with momentum degrees of freedom.
We also note, however, that such mixing can purify spin
entanglement if the momentum degrees are entangled
with the spin. The physics of creating entanglement be-
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tween spins and between momenta is very different. Thus,
the possibility of entanglement transfer via Lorentz
boosts could conceivably, in special situations, lead to
simplified state preparation and purification protocols.
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Entangled light in moving frames
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We calculate the entanglement between a pair of polarization-entangled photon beams as a function of the
reference frame, in a fully relativistic framework. We  nd the transformation law for helicity basis states and
show that, while it is frequency independent, a Lorentz transformation on a momentum-helicity eigenstate
produces a momentum-dependent phase. This phase leads to changes in the reduced polarization density
matrix, such that entanglement is either decreased or increased, depending on the boost direction, the rapidity,
and the spread of the beam.

DOI: 10.1103/PhysRevA.68.042102 PACS number~s!: 03.65.Ud, 03.30.1p, 03.67.Mn
The second quantum revolution @1# is changing the ways
in which we think about quantum systems. Rather than just
describing and predicting their behavior, we now use new
tools such as quantum information theory to organize and
control quantum systems, and turn their nonclassical features
to our advantage in creating quantum technology. The central
feature that makes quantum technology possible is quantum
entanglement, which implies that particles or  elds that have
once interacted are connected by an overall wave function
even if they are detected arbitrarily far away from each other.
Such entangled pairs,  rst discussed after their introduction
by Einstein, Podolsky, and Rosen @2#, are crucial in technol-
ogy such as quantum teleportation @3# and superdense coding
@4#. Furthermore, quantum entanglement is critical in appli-
cations such as quantum optical interferometry, where quan-
tum entangled N-photon pairs can increase the shot-noise
limited sensitivity up to the Heisenberg limit @5#.

While quantum entanglement as a resource has been stud-
ied extensively within the last decade @6#, it was realized
only recently that this resource is frame dependent, and
changes nontrivially under Lorentz transformations @7–12#.
In particular, Gingrich and Adami showed that the entangle-
ment between the spins of a pair of massive spin-1/2 par-
ticles depends on the reference frame, and can either de-
crease or increase depending on the wave function of the pair
@11#. A consequence of this  nding is that the entanglement
resource could be manipulated by applying frame changes
only. Many applications of quantum technology, however,
involve entangled photons rather than massive spin-1/2 par-
ticles, to which the massive theory does not apply. In this
paper, we work out the consequences of Lorentz transforma-
tions on photon beams that are entangled in polarization.
Each photon beam is described by a Gaussian wave packet
with a particular angular spread in momentum, and for the
sake of being de nite we discuss a state whose polarization
entanglement can be thought of as being produced by down-
conversion. Because both spin-1/2 particles and photons can
be used as quantum information carriers ~qubits!, the present
calculation also contributes to the nascent  eld of relativistic
quantum information theory @13#.

In order to calculate how a polarization-entangled photon
state transforms under Lorentz transformations, we need to
discuss the behavior of the photon basis sates. Because there
1050-2947/2003/68~4!/042102~4!/$20.00 68 0421

4

is no rest frame for a massless particle, the analysis of the
spin ~polarization! properties is quite distinct from the mas-
sive case. For instance, instead of using pm5(m ,0) as the
standard four-vector ~see Ref. @11#!, we have to de ne the
massless analog km5(1,ẑ). Note that km has no parameter m
and is no longer invariant under all rotations. In fact, the
little group of km is isomorphic to the noncompact two-
dimensional Euclidean group E~2! ~the set of transformations
that map a two-dimensional Euclidean plane onto itself!. For
a massless spin-1 particle the standard vector allows us to
de ne the eigenstate

Pmu ẑl&5kmu ẑl&, ~1!

Jzu ẑl&5lu ẑl&, ~2!

where ẑ is a unit vector pointing in the z direction. Since the
particle is massless, l is restricted to 61 @14#.

The momentum-helicity eigenstates are de ned as

upl&5H~p!u ẑl&, ~3!

where H(p) is a Lorentz transformation that takes ẑ to p.
The choice of H(p) is not unique, and different choices lead
to different interpretations of the parameter l . For instance,
in the massive case the choice of H(p) can lead to l being
either the rest-frame spin or the helicity. In the present case it
is convenient to choose

H~p!5R~ p̂!Lz~jp!, ~4!

where Lz(jp) is a Lorentz boost along ẑ that takes ẑ to upu ẑ
and R(p) is a rotation that takes ẑ to p̂, while jp is the
rapidity of the moving frame,

jp5lnupu. ~5!

For a parametrization in polar coordinates, we can write p̂
5(sin u cos f,sin u sin f,cos u):

R~ p̂![Rz~f!Ry~u!. ~6!
©2003 The American Physical Society02-1
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Again, this choice of R(p̂) is not unique ~see, for example,
Ref. @17#! but particularly easy to deal with in this context.
An arbitrary two-particle state in this formalism can be writ-
ten as

uCAA8BB8&5E E (
ls

gls~p,q!upl&AA8uqs&BB8d̃pd̃q,

~7!

where upl&AA8 and uqs&BB8 correspond to the momentum
and helicity states, as de ned in Eq. ~3!, of photons A and B.
Furthermore, d̃p and d̃q are the Lorentz-invariant momen-
tum integration measures:

d̃p[
d3p
2upu

~8!

and the functions gls(p,q) must satisfy

E E (
ls

ugls~p,q!u2, d̃pd̃q51. ~9!

To work out how a Lorentz boost affects an entangled
state, we must understand how the basis states upl& trans-
form. Following Refs. @14,15#, we apply a boost L to upl&,

Lupl&5H~Lp!H~Lp!21LH~p!u ẑl& , ~10!

where H(Lp)21LH(p) is a member of the little group of ẑ
~leaves ẑ invariant!, and hence is a rotation and/or translation
in the x-y plane. The translations can be shown @14# not to
affect the spin/helicity, and we are thus left with just a rota-
tion by an angle Q(L ,p). Using the parametrization p
5p(sin u cos f,sin u sin f,cos u) and solving for Q(L ,p) we
obtain

Q~L ,p!55
0 : L5Lz~j!

0 : L5Rz~g!, p̂Þ ẑ

g : L5Rz~g!, p̂5 ẑ
arg~B1iA ! : L5Ry~g!

~11!

for different Lorentz transformations and momenta, where

A5sin g sin f , ~12!

B5sin g cos u cos f1cos g sin u . ~13!

Noting that

Rz„Q~L8L ,p!…5Rz„Q~L8,Lp!…Rz„Q~L ,p!… ~14!

and taking advantage of the fact that all Lorentz boosts can
be constructed using Lz , Rz and Ry , Eq. ~11! allows us to
 nd Q(L ,p) for any L , and any momentum p. Applying
this rotation to the momentum-helicity eigenstate of a mass-
less particle we obtain

Lupl&5e2ilQ(L ,p)uLpl&. ~15!
04210
49
At this point one may be tempted to use the two helicity
states as a basis for the polarization density matrix. However,
because helicity states for different momentum eigenstates
reside in different Hilbert spaces, tracing out the momentum
degree of freedom produces unphysical results. For example,
we would  nd that a spatial rotation can change the entangle-
ment between two particles. Instead, we shall use the pho-
ton’s polarization four-vectors as basis states.

The polarization four-vectors for positive and negative he-
licity states are given by

e6
m ~ p̂!5

R~ p̂!

A2 F 0
1

6i
0
G . ~16!

A general polarization vector is, of course, formed by the
superposition of the two basis vectors. According Refs.
@9,18#, for a given four-momentum pm and associated polar-
ization em, a Lorentz boost has the following effect:

D~L!em5R~Lp̂!R~ p̂!21em. ~17!

However, this transformation is only correct for pure boosts
in the z direction, or rotations around the z axis if this axis is
not the momentum axis @as for those cases the angle Q(L ,p)
in Eq. ~11! vanishes#. In general, the four-vector em trans-
forms as

D~L!em5R~Lp̂!Rz„Q~L ,p!…R~ p̂!21em. ~18!

It is helpful to write D(L) in an alternative form

D~L!em5Lem2
~Lem!0

~Lpm!0 Lpm, ~19!

where (Lem)0 and (Lpm)0 denote the timelike component of
the transformed polarization and momentum four-vectors, re-
spectively. The form, Eq. ~19!, agrees with the general law
described in Ref. @16#. Note that from Eq. ~19! we can see
that D(L) is independent of our choice of R(p̂). The proof
that Eqs. ~18! and ~19! are equivalent is nontrivial, but an
outline is as follows. Note that both forms of D(L) obey

D~L8!D~L!em5D~L8L!em ~20!

and both forms have the property

D~R !em5Rem, ~21!

where R is a rotation. An explicit calculation of D„Lz(j)…
then shows that they are equivalent.

The second term on the right-hand side of Eq. ~19! is just
a momentum-dependent gauge transformation. It must be
different for each momentum in order to keep a consistent
overall ~Coulomb! gauge. To see that this term leads to mea-
surable consequences consider the polarization vector for
classical electromagnetic waves. The polarization vector
points along the gauge-invariant electric  eld, and the direc-
2-2
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tion of this vector undergoes the same transformation as in
Eq. ~19! @or Eq. ~18!# when acted on by a Lorentz transfor-
mation. In fact, the magnitude of the electric  eld undergoes
the same transformation as the diameter of an in nitesimal
circle centered at the momentum. This holds for any Lorentz
transformation and momentum. A detailed study of this
transformation will be published elsewhere.

In the following, we investigate two entangled photon
beams moving along the z axis. The beams are in a momen-
tum product state, and fully entangled in polarization,

gls~p,q!5
1
A2

dlse ilfpe isfqf ~p! f ~q!. ~22!

In Eq. ~22!, fp and fq are the azimuthal angles of p and q,
respectively. The phase factors e ilfpe isfq allow us to write
the state as

uC&5E E 1
A2

~ uhp&uhq&2uvp&uvq&) f ~p!up& f ~q!uq& d̃pd̃q,

~23!

where uhp& and uvp& are approximations of horizontal polar-
izatoion and vertical polarization given by @19#

uhp&[
1
A2

@e ifpe1
m ~ p̂!1e2ifpe2

m ~ p̂!# ~24!

uvp&[
2i
A2

@e ifpe1
m ~ p̂!2e2ifpe2

m ~ p̂!# . ~25!

So, for small u ~small spread of the momentum distribution!
we have

uhp&. x̂, ~26!

uvp&. ŷ, ~27!

and Eq. ~23! is a close approximation to a polarization Bell
state. Omitting the phase factors in Eqs. ~22! and ~24! instead
describes a photon beam where horizontal and vertical polar-
izations point in the r̂ and f̂ directions, respectively ~see Fig.
1!.

FIG. 1. ~a! ‘‘Standard’’ vertical polarization vectors uvp8& point in
azimuthal directions. ~b! ‘‘True’’ vertical polarization vectors uvp&
remain mostly in the x-y plane.
04210
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We speci cally consider the beams to have a Gaussian
spread in the u direction,

f ~p!5
1

N~s!
expF2

1
2 S u

su
D 2Gd~ upu2p0!, ~28!

where su is a parameter which controls the spread of the
beam, u is the polar angle of the momentum vector, and p0 is
the magnitude of the momentum of the photon beam, which
we arbitrarily set to unity. We do not take into account a
spread in the magnitude of the momentum because the mag-
nitude v is just a constant multiplying the momentum four-
vector and so

Lpm5L~v ,vp̂!5Lv~1,p̂!5vL~1,p̂!. ~29!

Inserting this result into Eq. ~19!, we see that the v depen-
dence cancels. We now boost state ~23! and trace out the
momentum degrees of freedom to construct the polarization
density matrix @20#.

Even though photons are constrained to be transverse for
any particular momentum, states that are not momentum
eigenstates must, because they are spin-1 particles, be treated
as three-level systems. In order to calculate the entanglement
present in the quantum state, we therefore cannot use Woot-
ters’ concurrence @21#, as it is only a measure of entangle-
ment for two-state quantum entangled systems. Instead, we
use here ‘‘log negativity,’’ an entanglement measure intro-
duced by Vidal and Werner @22#. This measure is de ned as

EN~r!5log2irTAi , ~30!

where iri is the trace norm and rTA is the partial transpose
of r . EN(r) is a measure of the entanglement but is unable
to detect bound entanglement. We can now calculate the
change in log negativity explicitly for a Lorentz boost with
rapidity j at an angle a with respect to the photon momen-
tum, i.e., a Lorentz transformation

L5Ry~a!Lz~j!Ry~a!21, ~31!

applied to Eq. ~23!. Figure 2 summarizes the results of vary-
ing the boost direction a for a given spread su , and shows
that the entanglement can increase or decrease, depending on
boost direction. For a50, positive j corresponds to boost-
ing the photon in the direction of the detector. Note that the
entanglement at zero rapidity is only about half its maximal

FIG. 2. Log negativity of the spin as a function of rapidity
shown for various boost directions. a is the boost angle. For all of
the curves the angular spread is the same, s51.0.
2-3
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value, because the angular spread of the momentum leaves
the spin degrees of freedom in a mixed state after tracing out
momentum.

In general, boosts in the direction of motion tend to in-
crease the entanglement to saturation, while boosts away
from it decrease it. As a approaches p/2, the effect on en-
tanglement becomes symmetric.

Figure 3 summarizes the effect of applying the boost in
Eq. ~31! for varying spreads in the momentum distribution,
for a boost direction given by a52p/5.

Distributions with small spread su<0.1 tend to change
entanglement only imperceptively, while for larger spread
the entanglement changes become more pronounced. Note
that for su51.3 the entanglement becomes zero ~for boosts
of negative rapidity! and then increases. This appears to hap-
pen because the momentum spread becomes so large that a

FIG. 3. Log negativity as a function of rapidity shown for beams
of various angular spreads, s . For all of the above curves the boost
direction a52p/5.
04210
5

signi cant portion of the beam is in fact moving in the 2 ẑ
direction. Because of the collimating effect that a Lorentz
boost has on the beam, the entanglement can actually in-
crease in such a situation.

We have derived the relativistic transformation law for
photon polarizations, and shown that the entanglement of
polarization-entangled pairs of photon beams depends on the
reference frame. Boosting a detector ~even at an angle! to-
wards the beams increases this entanglement because the
momentum distribution is shrunk by the boost ~see also Ref.
@12#!. The type of entangled beams that we have investigated
in this paper are idealizations of realistic states that can be
created using parametric down-conversion. In principle,
therefore, the effects discussed here should become relevant
as soon as linear-optics based quantum technology is created
that is placed on systems that move with respect to a detector
~or when the detector moves with respect to such a system!.
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Efficient generation of tunable photon pairs at 0.8 and 1.6 mm

Elliott J. Mason, Marius A. Albota, Friedrich König, and Franco N. C. Wong
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We demonstrate efficient generation of collinearly propagating, highly nondegenerate photon pairs in a
periodically poled lithium niobate cw parametric downconverter with an inferred pair generation rate of 1.4 3

107�s�mW of pump power. Detection of an 800-nm signal photon triggers a thermoelectrically cooled 20%-
efficient InGaAs avalanche photodiode for the detection of the 1600-nm conjugate idler photon. Using
single-mode fibers as spatial mode filters, we obtain a signal-conditioned idler-detection probability of
�3.1%. © 2002 Optical Society of America

OCIS codes: 270.0270, 030.5260, 190.4410, 270.5570.
Efficient generation of entangled photons is essential
for realizing practical quantum information processing
applications such as quantum cryptography and quan-
tum teleportation. Entangled photons are routinely
generated by spontaneous parametric downconver-
sion (SPDC) in a nonlinear crystal.1 More recently,
nonlinear waveguides were used for photon pair
generation with high eff iciency2 –4 and better control
of the spatial modes. So far, these entangled photon
sources have large bandwidths. Recently, a narrow-
band application was suggested in a singlet-based
quantum teleportation system5 in which narrowband
(tens of megahertz) polarization-entangled photons
are needed for loading quantum memories that are
composed of trapped Rb in optical cavities.6 Such
a narrowband source is most conveniently produced
with a resonant cavity such as an optical parametric
amplifier (OPA).7,8 In addition to being narrowband,
the OPA outputs have well-defined spatial modes
that allow efficient coupling into trapped-Rb cavi-
ties. The requirements for eff icient generation in
an OPA and in SPDC are different. In an OPA,
collinearly propagating signal and idler beams are
necessary to minimize walk-off, and intracavity losses
must be small compared with the cavity’s output
coupling. A desirable configuration consists of a
long crystal with light propagation along one of its
principal axes. In contrast, a nonlinear waveguide
is an excellent choice for SPDC but is ill suited for
intracavity use because of high waveguide propagation
losses.

As a precursor to an OPA configuration, we
have studied the generation of collinearly propagat-
ing tunable outputs at �800 and �1600 nm in a
quasi-phase-matched periodically poled lithium nio-
bate parametric downconverter. Unlike most other
SPDC sources, our periodically poled lithium niobate
source utilizes a long bulk crystal, which results in a
small bandwidth, and the two output wavelengths are
widely separated. The choice of wavelengths is de-
signed for loading local Rb-based quantum memories
at 795 nm and for low-loss f iber-optic transmission
of the conjugate photons at �1.6 mm. The 1600-nm
photon can be upconverted via quantum frequency
translation9 for remote quantum memory loading.
For the current work, we constructed a compact
0146-9592/02/232115-03$15.00/0
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all-solid-state InGaAs single-photon counter for de-
tecting the 1.6-mm photons.

We tested three f iber-pigtailed InGaAs avalanche
photodiodes (APDs) from JDS Uniphase (EPM239BA)
as passively quenched, gated single-photon coun-
ters.10– 12 Each APD was mounted in a small copper
block that was attached to a four-stage thermoelectric
cooler, which in turn was in contact with a brass
heat sink. We placed this thermoelectric-cooled APD
assembly in a sealed box mounted on top of four ad-
ditional TE coolers for improved temperature control
of the APD box. Using this all-solid-state cooling ap-
paratus, we were able to adjust the APD temperature
down to 260 ±C without the use of liquid nitrogen.
Typically we biased the APDs at 0.2–1.0 V below the
breakdown voltage of the selected APD device, and
we applied a gating pulse of 2–4 V to overbias the
APDs for single-photon detection. The gate pulses
had rise and fall times of 3–4 ns with subnanosecond
timing jitters, and the adjustable pulse length was
set at 20 ns. The avalanche output pulses were then
amplified by 40 dB with resultant pulse amplitudes of
1–2 V and rise times of less than 2 ns.

In general, dark counts increase exponentially with
increasing device temperatures, and hence a lower op-
erating temperature is preferred. However, afterpuls-
ing due to trapped charge carriers increases with lower
temperatures and also with longer gate durations and
higher gate repetition rates. We have found that at
an operating temperature of 250 ±C there was negli-
gible afterpulsing for gating frequencies of 100 kHz or
less, and the dark counts were low enough to yield a
high signal-to-noise ratio (see Fig. 3, below). Figure 1

Fig. 1. (a) Quantum efficiency (f illed circles) and (b) dark
count rate (open squares) of an InGaAs APD with a 20-ns
gate at 250 ±C as a function of overbias voltage.
© 2002 Optical Society of America
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shows the quantum eff iciencies (filled circles) and dark
count rates (open squares) of one of the three APDs at
an operating temperature of 250 ±C as a function of
the overbias voltage. We measured the quantum eff i-
ciency of the APD device with a 1.56-mm fiber-pigtailed
cw laser. The laser power was attenuated with vari-
able fiber-optic attenuators to 0.13 photon per 20-ns
gate ��0.85 pW�, and the power was monitored with
fiber-optic tap couplers and a high-accuracy optical
powermeter with a large dynamic range. For our coin-
cidence measurements, we chose the best of the three
APDs and operated it at 250 ±C with an overbias of
3.7 V. Under these operating conditions, we achieved
a quantum eff iciency of �20% with negligible after-
pulses and a dark count probability of 1.1 3 1023 per
20-ns gate.

We fabricated a 20-mm-long, 0.5-mm-thick period-
ically poled LiNbO3 (PPLN) crystal with a grating
period of 21.6 mm for type I third-order quasi-phase
matching. The PPLN was antiref lection coated on
both facets at 800 and 1600 nm (with �8% ref lec-
tion per surface at 532 nm) and was housed in a
temperature-stabilized oven with a stability of 60.1 ±C.
We first characterized the PPLN by performing dif-
ference frequency generation (DFG) with a strong
pump at 532 nm and a weak tunable (1580–1610 nm)
external-cavity diode laser. We also used a dis-
tributed feedback laser at 1559 nm to generate
DFG light at 808 nm. We achieved tunable outputs
by changing the oven temperature between 140
and 185 ±C with a measured tuning coefficient of
�1.3 nm�±C for the 1600-nm light. At a f ixed tem-
perature the DFG bandwidth in the probe wavelength
was 1.26 nm ��150 GHz�, in good agreement with
the expected value for a 20-mm-long PPLN. From
the DFG output powers we estimate that the ef-
fective nonlinear coefficient was 3.8 pm�V for the
third-order quasi-phase matching, which is lower than
expected because of nonuniformity and the suboptimal
duty cycle of the PPLN grating and also because of
pump–probe mode mismatch.

For coincidence measurements, we set the PPLN
oven at 142 ±C, which centered the signal and idler out-
puts at 808 and 1559 nm, respectively. The cw pump
at 532 nm was focused at the center of the crystal
with a waist of �90 mm. The copolarized, collinearly
propagating SPDC outputs were spatially separated
with a prism at the Brewster angle for detection by
a commercial Si single-photon counting module for
the 808-nm signal photons and by the InGaAs APD
single-photon counter for the 1559-nm idler photons.
The single-photon counting module (Perkin-Elmer
SPCM-AQR-14) had a quantum eff iciency of �54%
at 800 nm with a dark count rate below 100�s. We
first measured the singles rate by collecting the freely
propagating signal photons to obtain an inferred pair
generation rate of 1.4 3 107�s�mW of pump power.
The signal was also tuned to other wavelengths
within the temperature tuning range, and we obtained
similar singles rates. With the �150-GHz signal
bandwidth, the spectral brightness of the output was
9 3 104 pairs�s�GHz�mW of pump power, indicating
that the long bulk PPLN crystal was very efficient
56
even though only third-order quasi-phase matching
was used.

Spatial mode matching between the signal and idler
is a problem with SPDC because of its spontaneous
nature and hence its lack of spatial mode selection.
Often an interference f ilter and a small aperture are
used to select a narrow spectral width and a small
number of spatial modes of a multimode field to yield
high visibility in a Hong–Ou–Mandel interferometric
measurement. Even SPDC in a waveguide does
not necessarily eliminate the spatial mode-matching
problem.4 We took a different approach by coupling
the SPDC outputs into single-mode fibers13 without
interference f ilters. By using a probe laser we mea-
sured a fiber coupling efficiency of a well-defined
single transverse mode to be �50%. For the SPDC
signal at 808 nm we measured a singles rate of
3 3 104�s�mW of pump power (typical pump powers
of 1–2 mW were used). For a measured propagation
efficiency of �85%, a Si detector eff iciency of �54%,
and a fiber coupling eff iciency of �50%, we obtain
an inferred generation rate of �1.3 3 105�s�mW for
the single-mode signal photons, which is a factor of
100 smaller than that inferred from our multimode
free-space detection rate. The challenge in our coin-
cidence measurements was to match the single spatial
modes of the highly nondegenerate signal and idler to
their respective f ibers.

Figure 2 shows the experimental setup for signal–
idler coincidence measurements. The signal photon
was coupled into an 800-nm single-mode optical
fiber and was detected by the single-photon counting
module, whose electrical output pulse was used to
trigger the gate for the InGaAs detector. We set up
the idler collection optics to select the spatial mode
that was conjugate to the f iber-coupled signal mode.
The idler mode was coupled into a 70-m-long 1550-nm
single-mode fiber that provided a 345-ns time delay
to allow the gating pulse to turn the InGaAs detector
on shortly before the arrival of the idler photon. We
limited the maximum trigger and detection rate to
10 kHz to avoid any afterpulsing effect. The outputs
of the two detectors were recorded on a two-channel
digitizing oscilloscope and stored for analysis. Fig-
ure 3 shows a histogram of the conditional detection
probability, hc, of a 1609-nm photon per detected
808-nm photon. The figure clearly shows that the
dark count noise was quite small and the photon pairs
were time coincident within a 4-ns window. The tim-
ing accuracy was limited by the 2-ns digitizing time

Fig. 2. Schematic of the experimental setup for coinci-
dence measurements.
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Fig. 3. Histograms of idler photon detection probability
conditional on signal photon detection in 2-ns time bins
over a 20-ns window. Accidental coincidences due to dark
counts are barely noticeable outside the 4-ns coincidence
window.

bin and the rise time of the InGaAs detector output
pulse ��2 ns�. We measured hc � 3.1%, limited by
the InGaAs detector quantum efficiency of 20%, the
propagation efficiency of 85%, and the single-mode
fiber-coupling and the signal–idler mode-matching
efficiency, which we infer to be �18%. This inferred
coupling and mode-matching efficiency of 18% and
our single-mode fiber-coupling eff iciency of �50%
of a probe laser suggest that the signal– idler mode
matching was �36%.

In comparison, Banaszek et al.4 reported a mea-
sured hc of 18.5% for a waveguide SPDC and trigger-
photon collection (at �700 nm) with a multimode fiber.
If we adjust our results to assume a Si-type detection
efficiency of �70% and no propagation losses, we infer
hc � 12.8% for our single-mode fiber collection system.
Kurtsiefer et al.13 used single-mode fibers for collect-
ing the degenerate outputs of a type II phase-matched
SPDC and obtained an impressive hc of 28.6%. Our
lower hc was probably a result of suboptimal collection
optics, made more diff icult by the widely different
signal and idler wavelengths.

In summary, we have demonstrated an efficient
cw source of highly nondegenerate photon pairs at
57
�800 and �1600 nm that uses a long bulk PPLN
crystal. Coincidence measurements were made with
a home-built all-solid-state InGaAs single-photon
counter for 1.6-mm detection. Bidirectional pumping
and judicious combining of the outputs7 should allow
us to efficiently generate nondegenerate polarization-
entangled photons. Efforts are also under way to use
the PPLN crystal in an OPA cavity configuration for
generating high-f lux narrowband photon pairs.

This work was supported by the U.S. Department of
Defense Multidisciplinary University Research Initia-
tive program administered by the U.S. Army Research
Office under grant DAAD-19-00-1-0177 and by the Na-
tional Reconnaissance Office. F. N. C. Wong thanks
D. S. Bethune for fruitful discussions on detector bias
circuitry.
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Generation of ultrabright tunable polarization entanglement without spatial, spectral,
or temporal constraints
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The need for spatial and spectral  ltering in the generation of polarization entanglement is eliminated by
combining two coherently driven type-II spontaneous parametric down-converters. The resulting ultrabright
source emits photon pairs that are polarization entangled over the entire spatial cone and spectrum of emission.
We detect a  ux of ,12 000 polarization-entangled pairs/s per mW of pump power at 90% quantum-
interference visibility, and the source can be temperature tuned for 5 nm around frequency degeneracy. The
output state is actively controlled by precisely adjusting the relative phase of the two coherent pumps.

DOI: 10.1103/PhysRevA.69.041801 PACS number(s): 42.65.Lm, 03.65.Ud, 03.67.Mn, 42.50.Dv

Polarization entanglement has been used to demonstrate a
variety of quantum effects from quantum teleportation [1] to
quantum cryptographic protocols [2]. The quality of
polarization-entangled photon sources can be characterized
by their pair  ux and the purity of the entangled state they
generate [3–7]. For the existing sources the requirements of
high  ux and high purity are often in con ict. Consider, for
example, type-II spontaneous parametric down-conversion
(SPDC) in a noncollinearly phase-matched b-barium borate
(BBO) crystal. Here [4] spatial and spectral  ltering are nec-
essary to eliminate nonentangled photons that would reduce
the purity of the output state. A source of polarization-
entangled photons has been proposed [3] and demonstrated
[6] in which the outputs of two different SPDC crystals are
combined interferometrically. It was recognized that such a
setup would generate entangled photons independent of their
wavelengths and angles of emission [3]. The two-crystal in-
terferometer, however, did not show the promised high  ux
and high visibilities [6]; this was attributed to technical dif-
 culties in the alignment.

Our group has investigated the use of a collinearly propa-
gating geometry and long periodically poled crystals to sim-
plify alignment and to increase the output  ux in both type-I
[8] and type-II SPDC [9]. In the case of type-II SPDC in
periodically poled potassium titanyl phosphate (PPKTP) [9],
we have obtained post selected polarization-entangled pho-
tons. However, spatial and spectral  ltering are still required
to obtain a high-purity entangled state and the postselection
process involves a 3-dB loss. In this Rapid Communication
we report on a robust implementation of the coherent addi-
tion of two SPDC sources based on a single PPKTP crystal.
Our scheme fully exploits, for the  rst time to our knowl-
edge, the properties of interferometric combining of two co-
herent SPDC sources [3] to yield an ultrabright source of
polarization entanglement that has no spatial or spectral con-
straints. Moreover, collinear operation allows us to control
the output state by locking the pump phase of the same in-
terferometer. This setup produces approximately ten times
more polarization-entangled pairs/s per mW of pump than

any other continuous-wave (cw) source in the literature [5,7].
Figure 1 illustrates a source that coherently combines the

outputs of two SPDC crystals. A laser is split by a 50-50
beam splitter (BS) and pumps the two crystals that are phase
matched for collinear type-II SPDC. In the low-gain regime,
the biphoton state just after the crystals is given by

uCl =
1
Î2

suHAsvsdVAsvidl + eifpuHBsvsdVBsvidld , s1d

where A and B refer to the two arms of the interferometer, vs
and vi are the signal and idler frequencies, respectively, and
fp=kpsLB  LAd is the difference of the delays accumulated
by the pump swith wave vector kpd in the paths LA and LB
between the 50-50 BS and the crystals. A half-wave plate
sHWPd is used to rotate the polarizations by 90° in arm B, so
that the output state after the polarizing beam splitter
sPBSd is

*Electronic address: m ore@mit.edu

FIG. 1. Schematic of the two-crystal source of polarization-
entangled photons. Black (gray) refers to the signal (idler)  eld
amplitude at vs svid. Horizontal (vertical) polarization: l s(d. BS,
beam splitter; HWP, half-wave plate; PBS, polarizing beam splitter.
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uCl =
1
Î2

suH1svsdV2svidl + eifuV1svsdH2svidld , s2d

where 1 and 2 refer to the two PBS output ports. The overall
phase f=fp+fs+fi is determined by the pump phase fp
and the phase delays accumulated by the signal and idler,
respectively, with fs,i=ks,isLB8  LA8d  Dfl/2svs,id. The first
term of fs,i is the delay due to the arm lengths LA8 and LB8
between the crystals and the PBS, and the second term is the
phase difference introduced by the HWP. Note that the phase
delays introduced by the identical crystals in the two arms
cancel. Under collinear phase matching kp=ks+ki, and f is
equal to the phase difference accumulated by the pump in the
Mach-Zehnder interferometer formed between the 50-50 BS
and the PBS except for a fixed offset due to the HWP. The
phase of the output biphoton state in Eq. s2d can therefore be
precisely controlled by locking the Mach-Zehnder interfer-
ometer as seen by the pump alone: one can generate the
triplet sfor f=0d or the singlet state sf=pd, as well as inter-
mediate states that are linear combinations thereof.

The HWP constrains the signal (idler)  elds from the two
crystals to exit at output 1 (2) in Fig. 1, ensuring [3,10] that
the two sources are indistinguishable so that all the photons
are polarization entangled regardless of their wavelengths
and directions of emission. Spatial and spectral  ltering is
unnecessary in this two-crystal con guration, thus promising
a source that has a much higher photon-pair  ux, plus a
larger bandwidth and spatial extension than BBO sources.
Due to energy and momentum conservation, one expects the
emitted photon pairs from this broadband spatially extended
source to show spectral and spatial entanglement. Additional
advantages of this scheme include automatic erasure of tim-
ing distinguishability, nondegenerate operation, and source
tunability.

To implement the interferometric source described above
it is crucial that the two SPDC sources be identical. Source
differences introduce an element of distinguishability be-
tween the two paths that would lead to a mixed state output.
We therefore implemented the scheme based on a single
crystal with counterpropagating pump beams derived from a
single laser. The single-crystal approach is particularly useful
with periodically poled crystals, as it mitigates imperfections
in the pro les of the periodic gratings.

We used a 10-mm-long (X crystallographic axis),
1-mm-thick (Z axis), and 4-mm-wide (Y axis) hydrother-
mally grown PPKTP crystal with a grating period of 9.0 mm.
At a temperature of .32°C this grating period phase
matches type-II collinear frequency-degenerate down-
conversion of a 398.5-nm pump polarized along the Y axis
and propagating along the crystal’s X axis. The crystal was
housed in an oven and was maintained at its operating tem-
perature with ±0.1°C precision. This crystal was previously
characterized and used in type-II collinear SPDC to yield
single-beam quantum interference with a 99% visibility [9].
We used second-harmonic generation to measure the tem-
perature and wavelength tuning behavior in PPKTP using a
cw tunable laser centered around 797 nm. The second-
harmonic measurements are well described by the Sellmeier
phase-matching equations for PPKTP [11], which allow us to

calculate the spatial and spectral properties of the down-
converted photons, as well as the phase-matching angles’
dependence on the crystal temperature. The latter predictions
have been veri ed by imaging the emitted photons with a
charge-coupled-device camera and narrow spectral  lters.

The experimental setup is shown in Fig. 2. The frequency-
doubled cw Ti:sapphire pump laser at 398.5 nm was split by
a BS that had a splitting ratio of ,50-50. To balance the
powers of the two pump beams we inserted a half-wave plate
(HWP1) to vary the horizontally polarized pump power in
the (counterclockwise propagating) brighter path. The crystal
was not phase matched for a vertically polarized pump. Each
pump beam focused to a waist of ,150 mm at the center of
the PPKTP crystal. The generated beams were collimated
with 300-mm radius-of-curvature dichroic mirrors (DM1,2)
and combined at a PBS after the polarization of one of the
beams was rotated by 90° with a HWP. The dichroic mirrors
were coated for high re ectivity (HR) at 797 nm and for high
transmission (HT) at 398.5 nm, with a residual re ectivity of
0.2% at the pump wavelength. The pump beams, which
propagated collinearly with the down-converted beams, were
weakly re ected by the four mirrors (DM1-4) and recom-
bined on the PBS, which had a ,20-80 splitting ratio at the
pump wavelength. The resultant pump beam from port 2 of
the PBS was directed by a dichroic mirror (DM5, HR at
398.5 nm, and HT at 797 nm) for detection with an ultravio-
let photodiode. The BS and PBS in Fig. 2 formed a Mach-
Zehnder interferometer for the pump and the detected fringes
were used to stabilize the interferometer with a side-locking
technique. This provided a convenient and robust way to
control the phase f of the output state in Eq. (2). By insert-
ing a dispersive medium (such as a thin glass plate) in one of
the arms of the Mach-Zehnder interferometer we introduced

FIG. 2. Experimental setup. BS, 50-50 beam splitter; DM, di-
chroic mirror; PBS, polarizing beam splitter; HWP, half-wave plate;
IF, 3-nm interference  lter centered at 797 nm. HWP1 is used to
balance the  ux of down-converted photons in the two directions.
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a  xed but variable offset between the phase of the pump
fringes and the phase of the output state (the overall offset
phase includes other dispersive elements in the interferom-
eter). By varying this phase offset, we were able to lock the
phase of the output state at an arbitrary value while optimiz-
ing the side-locking feedback signal.

We placed two irises in the output beam paths to control
the acceptance angle of the detection system. We estimate
that an iris diameter of 1 mm corresponded to an internal
emission solid angle of ~3.5310 5 sr at the crystal. Flat di-
chroic mirrors (not shown in Fig. 2) similar to DM1 were
used to eliminate residual pump light. The output photons
were detected with single-photon Si detectors (Perkin-Elmer
SPCM-AQR-14) through polarization analyzers (composed
of a half-wave plate and a polarizer). The outputs of the
single-photon detectors were counted and also sent to an AND
gate (TTL logic family 74F) for coincidence counting. The
coincidence window for this con guration was measured to
be 39.4 ns. This parameter allowed us to correct for the rate
of accidental coincidences in all of the data reported. For
example, when 12 000 coincidences/s were measured, an av-
erage of 67 000 singles/s were detected at each single-photon
detector and ,250 coincidences/s were due to accidental
Poisson processes (better coincidence logic would make this
correction unnecessary).

A summary of our experimental results, with the acciden-
tals removed, is shown in Figs. 3–5 for f=p (singlet). The
temperature of the crystal was set to ,32°C to ensure fre-
quency degenerate operation. Figure 3 shows the quantum
interference in the coincidence counts when the analyzer
angle in arm 2 was varied for a  xed angle in arm 1 with no
narrow-band interference  lter . We observed a visibility of
s100±3d% fs85±3d%g when analyzer 1 is set to 0° s45°d. In
what follows we will use the 45° visibility as an indication of
the quality of the state generated.

In Fig. 4 we report the 45° visibility for the singlet state as
a function of the iris diameter. Two sets of data are shown,
one using a 3-nm interference  lters centered at 797 nm

placed in front of the detectors (diamonds) and one in which
the interference  lter was removed (squares). In both cases
the visibility is almost constant as a function of the iris di-
ameter. This allows us to increase the pair  ux (Fig. 4 inset)
while preserving the purity of the output state. With the
3-nm  lter we observed a visibility of 90% and a  ux
.12 000 pairs s 1 mW 1 with a 4-mm iris. Under this con-
dition, following Ref. [12], we tested Bell’s inequality and
obtained S=2.599±0.004, violating the classical limit by
more than 100s.

Figure 4 can be compared with data obtained in a single-
pass con guration with similar collection geometry proper-
ties reported in Ref. [9]. The visibility of quantum interfer-
ence in the single-pass experiment drops much faster as the
iris diameter increases than in this interferometric con gura-
tion. The nearly constant visibility in Fig. 4 arises from ef-
fective spatial and spectral indistinguishability in this dual-
pumped interferometric con guration.

Two main factors limited the visibility: wave-front distor-
tion and diffraction caused by the components of the inter-

FIG. 3. Coincidence counts for the frequency-degenerate singlet
state versus analyzer angle u2 in arm 2 for analyzer angle in arm 1
set at 45° (solid circles) and 0° (open squares). Aperture size:
4 mm; no interference  lter was used; pump power: 0.7 mW. Each
point is averaged over 10 s and the lines are a sinusoidal  t to the
data.

FIG. 4. Frequency-degenerate singlet state 45°-visibility versus
iris diameter. In the inset: coincidence counts/s per mW of pump
power versus iris diameter. No interference  lter (squares) and
3-nm interference  lter centered at 797 nm (diamonds).

FIG. 5. 45° visibility (corrected for accidentals) versus signal
wavelength (no interference  lter , iris diameter 2.2 mm) with a
measured  ux of 3500 pairs s 1 mW 1 . The wavelengths on the ab-
scissas are calculated from temperature tuning curves of the
Sellmeier equations.
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ferometer, and defects in the electric- eld poling of the crys-
tal. Wave-front distortion and diffraction lead to spatial
distinguishability between the two down-converted beams.
Inhomogeneity in the crystal grating introduces a temporal
mismatch between the two paths. Both these effects were
mitigated somewhat by closing the iris and by adding spec-
tral  lters. To investigate the effects of wave-front distortion
and diffraction we measured the interferometer visibility di-
rectly by injecting a laser beam at 797 nm through arm 2 of
the PBS in Fig. 2 and observing the fringe signal in arm 1.
The input and output beam diameters could be varied with
irises. When we changed the diameter of the output beam for
a  xed input beam diameter, the visibility showed the same
plateau for small iris diameters as in Fig. 4. When we de-
creased the input beam diameter for a  xed output beam
diameter the visibility increased linearly, approaching 100%.
This suggests that the diffraction inside the interferometer
was responsible for the  at plateau in the visibility of Fig. 4.
We note that a slight mismatch in the length of the two
interferometric arms can also degrade the visibility.

No interference  lter was used in obtaining the data
shown in Fig. 5 and the iris diameter was  xed at 2.2 mm.
The temperature of the crystal was then scanned between
20 °C and 50 °C and the 45° visibility was measured. We
used our knowledge of the Sellmeier equations, veri ed by
down-conversion and second-harmonic generation measure-
ments, to calculate the phase-matched signal and idler wave-
lengths for each temperature setting, and hence obtain the
abscissas shown in this  gure. Figure 5 shows that the 45°
visibility is essentially independent of the signal and idler

emission wavelengths for a range of ,5 nm around degen-
eracy.

In conclusion, we have demonstrated a source of
polarization-entangled photon pairs with high  ux and state
purity. The cw source is based on the interferometric combi-
nation of two coherently driven type-II sources of spontane-
ous parametric down-conversion from a single PPKTP crys-
tal. This dual-pumped source is uniquely characterized by
the fact that all the emitted photon pairs are polarization
entangled, regardless of their wavelengths and directions of
emission. Therefore it can be tuned, has a wide bandwidth,
and an extended spatial pro le. We believe that our source
produces spatial and spectral entanglement, in addition to
polarization entanglement, thus providing additional degrees
of freedom that can be used for quantum communication.
Further work with this source is needed to experimentally
demonstrate these additional forms of entanglement. If suc-
cessful, we would then have a source that could be used to
demonstrate fundamental quantum properties [13] and in
cryptographic protocols with improved security [14].
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University Research Initiative (MURI) program administered
by the Army Research Of ce under Grant No. DAAD-19-00-
1-0177, the Defense Advanced Research Projects Agency
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Efficient and spectrally bright source of polarization-entangled photons

Friedrich König,* Elliott J. Mason, Franco N. C. Wong, and Marius A. Albota
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

sReceived 23 September 2004; published 9 March 2005d

We demonstrate an ef cient  ber -coupled source of nondegenerate polarization-entangled photons at 795
and 1609 nm using bidirectionally pumped parametric down-conversion in bulk periodically poled lithium
niobate. The single-mode source has an inferred bandwidth of 50 GHz and a spectral brightness of
300 pairs/ ss GHz mWd of pump power that is suitable for narrowband applications such as entanglement
transfer from photonic to atomic qubits.

DOI: 10.1103/PhysRevA.71.033805 PACS numberssd: 42.50.Dv, 42.65.Lm, 03.67.Mn

I. INTRODUCTION

The demonstration of the Einstein-Podolsky-Rosen sEPRd
paradox is one of the most striking quantum effects observed
to date. It reveals how entanglement of a nonseparable state
produces nonlocal correlations that cannot be explained clas-
sically, as manifested in the violation of the Bell’s inequali-
ties f1g. Nonlocality is at the heart of a number of applica-
tions such as quantum cryptography and long-distance
teleportation, which require ef cient distribution of entangle-
ment over long distances. Photonic qubits are more easily
transported over long distances than atomic qubits and, as a
result, distribution of entangled photons is an essential part
of a support infrastructure for quantum communications and
distributed quantum computation networks.

In this work we report on a source of polarization-
entangled photon pairs that is suitable for long-distance
quantum information processing. Entangled photons at 795
and 1609 nm are created by nondegenerate parametric down-
conversion with a spectral brightness that is suf cient for
loading and entangling narrowband Rb-based quantum
memories at 795 nm. The shorter-wavelength photon of this
source can be used to directly excite a trapped Rb atom in a
high- nesse cavity that serves as a local quantum memory.
The other photon at 1609 nm is suited for  ber -optic delivery
because it lies in the low-loss transmission window of optical
 bers s1500–1650 nmd.

In one proposed architecture for long-distance teleporta-
tion f2g, a local and a remote Rb quantum memory are
loaded using entangled photons. The stored atomic entangle-
ment is then used to teleport an unknown atomic state from
one location to the other f3g. Implicitly required for the ar-
chitecture are the ef cient transport of entangled photons
over long distances and wavelength matching between the
entangled photons and the trapped atomic Rb. Because of
unavoidable losses through long optical  bers and the nar-
row bandwidth of atomic Rb of tens of MHz, it is essential to
have a spectrally bright source of entangled photons at the
above mentioned wavelengths. Note, however, that the en-
tanglement of successfully delivered qubits is not degraded

in this scheme f2g. For loading of the remote quantum
memory, the 1609-nm photon has to be upconverted to the
Rb wavelength at 795 nm with preservation of its polariza-
tion quantum state. 90%-ef cient upconversion f4g has re-
cently been demonstrated at the single-photon level for a
 xed input polarization, and quantum-state preserving up-
conversion sfor an arbitrary polarization qubitd is expected to
have a similar conversion ef ciency .

Typical down-conversion sources using beta barium bo-
rate sBBOd crystals f5–7g are not suitable for narrowband
applications such as quantum memory loading because of
their large bandwidths of 1–10 nm. These sources also have
relatively low  ux, partly because of inef cient collection of
the output photons in their emission cone and partly because
of the small nonlinear coef cient of BBO. Down-conversion
in waveguide nonlinear crystals f8,9g is much more ef cient
but the outputs are still broadband and polarization entangle-
ment using these waveguide crystals has not been reported.

We have previously demonstrated a high- ux source of
nondegenerate photon pairs at 795 and 1609 nm in bulk pe-
riodically poled lithium niobate sPPLNd in a collinearly
propagating geometry f10g. In the present work we have im-
proved the source brightness to enter a regime suitable for
narrowband applications such as atomic excitation and we
have modi ed the apparatus for the generation of
polarization-entangled photon pairs. PPLN has an effective
nonlinear coef cient that is an order of magnitude larger than
that of BBO and it can be tailored to phase match at any set
of operating wavelengths within the transparency window of
the crystal. In addition, PPLN has a wide temperature tuning
range and is commercially available. Compared with more
conventional noncollinear con gurations f5–7g, collinear
propagation in noncritically angle phase-matched down-
conversion permits the use of a long crystal for more ef -
cient generation. Moreover, the beamlike sinstead of cone-
liked output can be collected and  ber -coupled more
ef ciently for long-distance transport. This collinear geom-
etry has recently been utilized in a type-II phase-matched
periodically poled KTiOPO4 sPPKTPd down-converter to ef-
 ciently generate polarization-entangled photons at 795 nm
f11g. In a dual-pumping scheme with interferometric combi-
nation of the collinear type-II phase-matched PPKTP outputs
a tenfold increase in  ux has been demonstrated f12g. This
dual-pumping method employs a single nonlinear crystal that
is driven coherently by two counterpropagating pumps and is

*Now at School of Physics and Astronomy, University of St. An-
drews, North Haugh, St. Andrews, Fife, KY16 9SS, Scotland.
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suitable for nondegenerate operation with wavelength tuning.
For the current work, we have applied the dual-pumping

technique to the generation of highly nondegenerate
polarization-entangled photons using PPLN as the nonlinear
crystal. By coupling the output signal and idler photons into
their respective single-mode optical  bers, we obtain single-
spatial-mode photon pairs that are highly suited for spatial
mode matching and  ber -optic transport of the 1.6-mm light.
Single-mode  ber -optic delivery is particularly useful for ap-
plications such as the above-mentioned quantum-memory
loading of a trapped atom in a high- nesse optical cavity.
Fiber coupling of the outputs also allows one to select a
mode-matched portion of the spontaneously emitted output
 eld from the crystal in order to limit the spectral bandwidth
of the light. In our case, we have obtained a spectral band-
width of ,50 GHz which is less than the phase-matching
bandwidth s,150 GHzd of our 2-cm-long PPLN crystal. We
have achieved a spectral brightness that is suitable for nar-
rowband wavelength-sensitive applications such as the pro-
posed long-distance teleportation protocol f2g.

In the next section we describe our dual-pumping genera-
tion scheme for the creation of polarization-entangled photon
pairs in PPLN. In Sec. III, the characteristics of the PPLN
source are presented when operated as a single-pass down-
converter. Finally, in Sec. IV we describe the performance of
the bidirectional pumping scheme and the violation of Bell’s
inequality as a measure of the purity of the polarization en-
tanglement, before we conclude in Sec. V.

II. GENERATION OF POLARIZATION ENTANGLEMENT

Spontaneous parametric down-conversion sSPDCd in a
nonlinear optical crystal is a standard technique for generat-
ing polarization-entangled photons. In SPDC, a pump photon
is converted into two lower-frequency photons, called signal
sSd and idler sId, that have de nite polarizations. For ex-
ample, in a low-gain type-I phase-matched interaction, the
signal and idler photons are copolarized with an output state
safter ignoring the vacuum and higher-order modesd given by
uCl= u1lS·u1lI·, where • refers to horizontal polarization. In
this example, uCl is a separable state and there is no polar-
ization entanglement. It is clear that SPDC, by itself and
without additional arrangements, does not produce polariza-
tion entanglement in which each photon of the down-
converted pair appears to be randomly polarized and yet the
pair is polarization correlated.

It was proposed f13,14g and recently demonstrated f12g in
a type-II phase-matched system that polarization entangle-
ment can be readily obtained if the outputs from two coher-
ently driven identical down-converters are interferometri-
cally combined. A remarkable property of such a
bidirectionally pumped arrangement is that spatial, spectral,
or temporal  ltering is no longer necessary for obtaining
high quality entanglement f12g. In our current experiment,
we explore a type-I phase-matched system in a similar bidi-
rectional pumping arrangement. Since PPLN is type-I phase-
matched the signal and idler outputs have the same polariza-
tion, and hence they can only be separated if the outputs are
very different in wavelength, using a dispersing prism or

dichroic mirror, for example. A con guration combining two
nondegenerate type-I phase-matched down-conversions in
PPLN is schematically shown in Fig. 1. The horizontally
polarized signal and idler  elds in one direction spath 1d are
combined with the vertically polarized signal and idler  elds
safter a p /2 polarization rotationd in the other direction spath
2d at the polarizing beam splitter. The signal and idler out-
puts are then separated at the dichroic mirror.

After the interferometric combination, the lowest-order
nonvacuum output is the biphoton state

uCl = au1lS·u1lI·u0lS↑u0lI↑ + bu0lS·u0lI·u1lS↑u1lI↑

= auHlSuHlI + buVlSuVlI, s1d

where the complex coef cients a and b represent the  eld
strengths for the two down-converters and ↑ indicates verti-
cal polarization. For a  ber -coupled implementation of Fig.
1, uau2subu2=1  uau2d is proportional to the overall ef ciency
for pair generation in path 1 s2d direction, and subsequent
propagation and coupling into the signal and idler  bers. The
phase of a sbd is the sum of the phases of the horizontally
sverticallyd polarized signal and idler  elds along their paths
from the crystal to the dichroic mirror. Note that the common
path for the signal and idler  elds after the polarizing beam
splitter adds a common phase to a and b, which yields an
inconsequential overall phase for the state uCl. In Eq. s1d, we
have simpli ed the notation by not displaying the vacuum
modes and by replacing u1l· and u1l↑ with uHl and uVl, re-
spectively. Implicit in Eq. s1d is that the signal and idler
photons have different wavelengths that allow them to be
easily separated and individually manipulated. A key charac-
teristic of this dual-pump con guration is that, with a proper
choice of polarization basis, phases, and relative pumping
strengths, one can in principle obtain any one of the four Bell
states, independent of propagation or coupling losses. For
instance, with a= b=1/Î2 and a 90° rotation of the idler
state, the singlet state uC l=afuHlSuVlI  uVlSuHlIg is ob-
tained.

III. SINGLE-PASS DOWN-CONVERSION

Figure 2 shows a schematic of our experimental setup for
implementing the polarization entanglement source with two

FIG. 1. Schematic view of two coherently driven and combined
PPLN down-converters. Horizontal sverticald polarization is de-
noted by • s↑d. HWP, half-wave plate; PBS, polarizing beam split-
ter; DM, dichroic mirror.
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identical down-converters. By using two counterpropagating
pump beams to coherently drive a single PPLN crystal, the
two down-converters can be made to be nearly identical
slimited by the crystal grating uniformityd. We  rst describe
and characterize our PPLN down-converter in single-pass
operation with only one pump before detailing the coherent
combining technique in the next section.

We employed a 2-cm long and 0.5-mm thick PPLN crys-
tal with a grating period of 21.6 mm as the nonlinear me-
dium. We previously fabricated the crystal for type-I third-
order quasi-phase-matched SPDC to generate tunable signal
and idler photons centered at ,0.8 and ,1.6 mm, respec-
tively, from a continuous-wave scwd pump at 532 nm f10g.
The crystal was antire ection coated at the pump, signal, and
idler wavelengths with re ectivities of ,1%, ,1%, ,8%
per surface, respectively. Using difference-frequency genera-
tion sDFGd we observed a phase-matching bandwidth of
,150 GHz at a  xed pump wavelength and a  xed crystal
temperature. By varying the crystal temperature, we were
able to tune the outputs over tens of nm, with a tuning coef-
 cient of ,150 GHz/ °C. For outputs at 795 and 1609 nm,
we operated the PPLN crystal at 176±0.1 °C. From the DFG
results we estimate the effective third-order nonlinear coef-
 cient to be 3.8 pm/V, which is less than expected due to
grating imperfections and mode mismatch in the DFG mea-
surements.

The PPLN down-conversion source, including the  ber -
coupled pump input and the output  ber couplers, was set up
on a 38374 cm2 breadboard for improved mechanical sta-
bility and portability. The 532-nm pump was derived from a
cw frequency-doubled Nd:YVO4 laser sCoherent Verdi-8d

with a maximum output power of 8 W. We coupled a small
fraction of the laser power into a single-mode polarization
maintaining  ber which delivered the pump light to the
PPLN source. This pump  ber exhibited slight multimode
behavior and the output was mode cleaned with a pinhole
and then focused into the center of the crystal with a beam
waist of 90 mm. Typical pump powers incident upon the
crystal were 1 mW; however, the crystal could easily be
pumped by a few hundred mW of cw power without damage.

The dichroic curved mirrors DM1 shighly re ecting at 0.8
and 1.6 mm and highly transmitting at 532 nmd in Fig. 2
served to focus the pump light into the crystal at the entrance
and to remove the pump beam from the down-converted out-
put at the exit. The DM1 mirror at the exit was also used to
refocus the diverging down-converted output light. The
down-converted light was spectrally separated into signal
and idler beams with a dispersing prism which also steered
the residual pump light away from the signal and idler paths.
Signal and idler beams could then be individually manipu-
lated before being coupled into their respective single-mode
optical  bers for transport or photon counting detection.

First we investigated the spontaneous emission character-
istics of the bulk PPLN crystal. We passed the signal output
through a 1-nm interference  lter sIFd centered at 795 nm
and imaged the output onto a high-resolution charged-
coupled device sCCDd camera sPrinceton Instruments
VersArray: 1300Bd with a detection sensitivity of a few pho-
tons. Figure 3 shows the evolution of the 795-nm output as a
function of the crystal temperature from a conelike pattern,
as in noncollinear SPDC, to a beam-like output, as in a col-
linear geometry. Figure 3sad shows a typical ring pattern of
the observed signal output emerging from the crystal. The
ring diameter is directly related to the internal emission angle
at which the output at the 795-nm wavelength was phase
matched. By varying the crystal temperature the phase-
matching angle for 795-nm emission was modi ed as shown
in Figs. 3sad–3scd. In Fig. 3scd the output was collinear with
a phase matching temperature T=183.6 °C.

We measured the ring diameters and hence the phase-
matching angles of the 795-nm PPLN emission as a function
of the crystal temperature. At each temperature T we ob-
tained the corresponding collinearly phase-matched signal
wavelength lCPMsTd by DFG phase-matching measurements.
Figure 4 shows the measured emission angles usTd relative to
lCPMsTd, and compares them with the computed phase-
matching angles obtained from the Sellmeier equations f15g
for noncollinearly phase-matched PPLN. The excellent
agreement between the experimentally observed signal emis-
sion angles and the theoretical values that we obtain without
free parameters allows us to infer the mode characteristics of

FIG. 2. Schematic of experimental setup used for single-pass
and dual-pumped down-conversion. DM, dichroic mirror; HWP,
half-wave plate; PBS, polarizing beam splitter; PZT, piezoelectric
transducer.

FIG. 3. Far- eld CCD camera images of
spontaneously down-converted light through a
1-nm interference  lter centered at 795 nm.
PPLN temperatures were sad 177.6 °C, sbd
180.6 °C, and scd 183.6 °C. The 795-nm light
was phase-matched at different angles as a func-
tion of temperature. Fringing is due to camera
etalon effects.
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the idler output beam. In particular, because of the signal-
idler wavelength difference, the 1.6-mm idler emission angle
is twice the 0.8-mm signal angle, and the idler bandwidth in
nm is four times as large as the corresponding signal band-
width of the signal-idler pair emission.

The CCD camera was used to measure the emitted signal
power within the 1-nm IF bandwidth. We integrated the pixel
output voltages spatially over the ring structure and sub-
tracted the background sobtained without input lightd from it.
The 795-nm signal power was measured as a function of
crystal temperature within a 1-nm bandwidth. In Fig. 5 we
plot the power versus the wavelength lCPMsTd, at which col-
linear phase matching was achieved at temperature T. Below
lCPM <794 nm, the 795-nm output was not phase-matched
and the emission vanished. Beyond lCPM =795 nm, the out-
put power remains more or less constant, indicating that the

integrated power was only weakly dependent on the phase-
matching temperatures sand emission anglesd.

Next we optimized the coupling ef ciency of the photon
pairs into single-mode  bers by utilizing the mode structure
information. In particular, we found that PPLN temperature
tuning was a useful tool to vary slightly the down-converted
beam parameters without affecting the down-conversion ef-
 ciency . We measured the  ber coupling ef ciencies at three
different 795-nm IF bandwidths of 0.11, 1, and 3 nm for the
signal photons. The PPLN temperature was nominally set for
collinear phase matching at lCPM =795 nm and aspheric
lenses of various focal lengths were used at each IF band-
width setting. The signal photon  ux before the signal  ber
was measured with a high-sensitivity Si photodiode under
strong pumping. For measuring the  ux after the single-
mode  ber we reduced the pump power and used a Si single-
photon counting module sSPCMd. After accounting for vari-
ous losses and adjusting for the different pumping levels and
different detection ef ciencies for the photodiode and the
single-photon counter, the best  ber coupling ef ciency of
18% for the signal beam was obtained using the 0.11-nm IF.
In contrast, with the 3 nm IF the coupling was at least an
order of magnitude less ef cient due to the much larger an-
gular bandwidth of the output signal photons.

For a 3-nm bandwidth, we infer from the measurements a
pair generation rate of 23107/ ss mWd of pump power at the
output of the crystal. The single-mode  ber -coupled signal
rate scorrected for detector ef ciency d was 5.1
3104/ ss mWd of pump power within the same 3-nm spectral
bandwidth. This rate was reduced from that at the crystal
because of propagation and  ber coupling losses.

We then studied the conditional detection probabilities by
making signal-idler coincidence measurements, as shown in
the schematic setup of Fig. 2. The 800-nm signal  ber was
connected to a  ber -coupled Si SPCM sPerkinElmer AQR-
13-FCd which produced a timing trigger upon detection of an
incoming signal photon. A time-delay pulse generator then
produced a bias gating pulse of 7–20 ns duration which was
sent to a Peltier-cooled passively-quenched InGaAs ava-
lanche photodiode sAPDd operating in Geiger mode for the
detection of the conjugate 1609-nm idler photon. The design
and properties of our homemade InGaAs APD single-photon
counter have been described elsewhere f10g. The main char-
acteristics of this InGaAs single-photon counter are a dark
count probability of 0.1% per 20-ns gate and a quantum ef-
 ciency of 19.8% at a detector temperature of  50 °C. The
generated electrical pulses from the detectors were then re-
corded by a computer and their timing information was used
to identify  rings of the Si and InGaAs counters correspond-
ing to pair coincidences. Typically we used a coincidence
window of 4 ns.

The conditional probability of detecting an idler photon,
given the detection of a signal photon, was 9.4% using the
narrowband 0.11-nm IF. In calculating this conditional prob-
ability we subtracted the background in the coincidence rate
due to accidental and dark counts sprobability of ,0.04%d.
This background rate was measured by offsetting the start of
the gating pulse for the InGaAs counter by an amount greater
than the 4-ns coincidence window. Given the 19.8%-ef cient
InGaAs counter, this implies ,50% losses in idler propaga-

FIG. 4. Plot of external far- eld PPLN emission angles, as mea-
sured by the ring diameters of CCD images along the crystal’s z
axis sopen circlesd and y axis sopen squaresd as a function of the
collinearly phase-matched wavelength lCPMsTd, where T is the
PPLN crystal temperature. The solid and dashed lines are the theo-
retical emission angle curves corresponding to the crystal’s y and z
axes, respectively, obtained from the PPLN’s Sellmeier equations
with no adjustable parameters.

FIG. 5. Integrated power of output emission at 795 nm in a
1-nm bandwidth. PPLN crystal temperature T was set for collinear
phase matching at the wavelength lCPMsTd. The total output power
shows little dependence on the emission angles for lCPM
ù795 nm.
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tion, mode matching, and  ber coupling into the 1.6-mm
optical  ber , conditioned on signal photon detection. Single-
mode pair generation is best characterized by the rate of
photon pairs that are successfully coupled into their respec-
tive single-mode  bers, i.e., the detected rate corrected for
detector quantum ef ciencies. In the case of the 0.11-nm IF,
we observed a signal-idler coincidence rate of 450/ ss mWd,
from which we infer a single-mode  ber -coupled pair  ux of
,4100/ ss mWd before detection. Without an IF the condi-
tional probability decreased to 5.2% because additional spa-
tial modes were coupling into the signal  ber whose idler
counterparts could not be all coupled simultaneously into the
idler  ber in an ef cient way. However, without using spec-
tral  lters we note that there were many more signal photons
coupled into the signal  ber spartly because of the absence of
the propagation loss through the IFd and we measured a
single-mode  ber -coupled pair  ux of 16 000/ ss mWd before
detection in this case.

IV. POLARIZATION ENTANGLEMENT BY
BIDIRECTIONAL PUMPING

Coherent combination of two down-converters for the
generation of polarization entanglement shown schematically
in Fig. 1 was implemented with the setup of Fig. 2 which we
have described for the single-pass case in the previous sec-
tion. To ensure that the two down-converters were as identi-
cal as possible, a single PPLN crystal was pumped in
counter-propagating directions along the crystal’s x axis. The
 ber -coupled 532-nm pump light was split into two beams
with a 50-50 beam splitter. Each of the pump beams was
directed into the PPLN crystal as shown in Fig. 2 and the two
outputs followed nearly identical paths as described in the
previous section. In order to generate polarization entangle-
ment, the signal and idler  elds of one of the down-
converters were rotated by 90° with half-wave plates
sHWPsd before combining with the output from the other
down-converter.

The spectral contents of the two down-converters were
identical by our use of a single crystal. However, spatial and
temporal mode matching were still necessary because there
were four path lengths stwo for the signals and two for the
idlersd that must be properly adjusted for ef cient generation
of polarization entanglement. When the two signal  elds
were combined at the polarizing beam splitter sPBSd, the two
spatial modes should be identical to avoid spatial-mode dis-
tinguishability, and similarly for the idler  elds. This was
accomplished by making sure that the two pump foci inside
the crystal were the same in size and location, and the two
signal and two idler path lengths were the same. The toler-
ance of the path length difference sa few mmd was dictated
by the confocal parameters at the location of the PBS. Note
that this mode overlap facilitated equal coupling to the re-
spective signal and idler  bers, where the  elds were pro-
jected into a single spatial mode. A more stringent require-
ment is temporal indistinguishability. That is, the path length
difference between the two combining signal  elds should be
the same as that between the two idler  elds within the co-
herence length of the photons, which was determined by the

bandwidths of the phase matching, the IF, and the  ber cou-
pling.

The photon bandwidth can be easily determined in a
Hong-Ou-Mandel sHOMd interferometric measurement for
degenerate signal and idler wavelengths. For nondegenerate
wavelengths two-photon quantum interference visibility can
be similarly utilized to measure the photon bandwidth. Quan-
tum interference is also the basis for demonstrating Bell’s
inequality in the Clauser-Horne-Shimony-Holt sCHSHd form
f1g that yields a measure of the quality of polarization en-
tanglement.

The biphoton output state of the bidirectionally pumped
down-converter, for equal pump power in both directions, is

uCl = suHlSuVlI  eifuVlSuHlId/Î2, s2d

where f is the relative phase that is a function of the phase
difference between the two pumps shence coherent pumping
is requiredd, and the signal and idler phases acquired along
the four path lengths. In the experiment, we controlled f by
a mirror mounted on a piezoelectric transducer sPZTd in one
of the idler paths, as shown in Fig. 2. We note that the output
state is a singlet polarization-entangled state for f=0.

For quantum interference observation and analysis, we
installed polarization analyzers sa HWP followed by a
horizontally-transmitting PBSd at the entrances to the signal
and idler single-mode optical  bers. The two analyzers were
initially set parallel and oriented to transmit an equal amount
of light from the two pumping directions sequivalent to
transmission at 45° relative to the horizontal polarizationd.
All angles of our analyzers were measured with respect to
this initial orientation.

We  rst demonstrated the generation of different two-
photon states by varying the PZT mirror position, as mani-
fested in the two-photon quantum interference. With the idler
analyzer set orthogonal to the signal analyzer, the PZT was
swept and the two-photon output state went through the sin-
glet state at f=0 and the triplet state at f=p. We observed a
sinusoidal modulation in the coincidence detection rate as a
function of the PZT sweep, as shown in Fig. 6. At f=0, the
singlet-state output is obtained which is invariant under co-
ordinate rotation and signal and idler are always orthogo-
nally polarized. Hence, a maximum in the coincidence rate

FIG. 6. Two-photon quantum interference from the bidirection-
ally pumped down-converter, showing the detected coincidence rate
as a function of the PZT mirror sweep with crossed analyzers. The
PZT changes the relative phase f of the output state of Eq. s2d,
yielding a maximum rate for f=0 ssingletd and a minimum rate for
f=p stripletd. See text for experimental details.
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was obtained for f=0. At f=p, the output state was trans-
formed into a triplet state with parallel polarizations for sig-
nal and idler, thus yielding a minimum in the coincidence
rate, as displayed in Fig. 6. For non-entangled photon pairs,
the sweep would not produce any modulation in the coinci-
dence rate, which would lie midway between the maximum
and minimum values. We obtain a quantum-interference vis-
ibility of ,93% if dark counts and accidentals are subtracted
sgrey line in Fig. 6d. The quantum interference coincidence
measurements in Fig. 6 were made with ,80 mW of total
pump power and the data were taken with the 0.11-nm IF.
The interferometric setup was very stable such that no lock-
ing was required. The observed free-running phase drift after
5 minutes was much less than p /4. We used a high-speed
multichannel analyzer sPicoQuant’s TimeHarp 200d for time-
resolved coincidence counting with an effective coincidence
window of 4 ns. As the PZT was slowly swept the comput-
erized data collection recorded the number of coincidences in
20-ms measurement time intervals. Note that the noise in
Fig. 6 is Poissonian if we consider that the data were
sampled in 20-ms time intervals. This initial set of measure-
ments permitted us to further optimize the quantum-
interference visibility and the coincidence rate.

Additional quantum interference measurements with the
0.11-nm IF were carried out and are shown in Fig. 7. In Fig.
7sad the coincidence counts are plotted for the singlet sopen
diamondd and triplet ssolid circled states as a function of the
idler analyzer angle uI when the signal analyzer angle uS was
set to equally transmit light from both of the down-
converters suS=0d. Here we obtain quantum-interference vis-
ibility of 94% for the singlet and triplet in Fig. 7sad. In Fig.
7sbd a similar plot of the coincidence counts is made with the
signal analyzer transmitting signal photons from the lower

sopen circled and upper ssolid diamondd pumping beams
sFig. 2d, with uS=p /4 and  p /4, respectively. By setting the
signal analyzer uS to pass the signal photons of just one of
the down-converters, we were simply measuring the pair
generation rate as a function of uI. For the data in Fig. 7sbd,
we obtained a higher visibility of 99.8% for the horizontal
suS= p /4d and 98% for the vertical suS=p /4d orientation of
the signal analyzer. We believe that the visibilities in Fig.
7sad were not limited by spatial mode mismatch, temporal
mismatch, or a rate imbalance of the two down-converters
because the interfering signal  elds shared the single mode
of the  ber and temporal overlap and rate balance were ad-
justed accurately. Therefore we conclude that a spectral dis-
tinguishability between the two down-converters is the most
likely reason, caused by either a difference in the spectra of
the  ber -coupled signals and idlers or the crystal nonunifor-
mity along its length.

We have used the quantum interference signature to mea-
sure the photon bandwidth of the  ber -coupled photon pair
in the absence of an IF. By translating the mirror M1 over a
distance of a few mm in  ne steps, we monitored the inter-
ference visibility as a function of distance. If the two or-
thogonal idler  elds do not overlap in time, relative to the
time difference of the two orthogonal signal  elds, then the
two-photon quantum interference disappears. We observed
that the full distance at half of the peak visibility was
3.4 mm, or ,11 ps in time. If we assume that the  ber cou-
pling acts as a Gaussian  lter , then the corresponding  ber -
coupled photon pulse width is 8.8 ps, or 50 GHz in spectral
bandwidth. This narrow bandwidth was obtained for a par-
ticular mode matching con guration which ef ciently
coupled only the light of this small bandwidth. This is a
manifestation of the high degree of spatial and spectral cor-
relation in the down-converted output. We have also per-
formed a series of quantum interference measurements to
demonstrate the violation of Bell’s inequality in the CHSH
form f1g. We follow the standard procedure of measuring
coincidence rates at different polarization analyzer angles us-
ing the singlet state as the input. The drift of the dual-
pumped down-converter interferometer was found to be neg-
ligible as it did not degrade the interference over the
6-minute measurement time, which included manually set-
ting the analyzer angles. We measured an S parameter of
2.606±0.010 for a pump power of 2.2 mW per beam. The
results indicate a violation of 60 standard deviations over the
classical limit of 2. Perfect polarization entanglement would
have yielded maximum violation of the Bell’s inequality
with S=2Î2.

V. SUMMARY

We have demonstrated an ef cient source of polarization-
entangled photons at highly nondegenerate wavelengths us-
ing bidirectional pumping of a single PPLN crystal followed
by coherent combination of the down-converted outputs. Our
source is  ber -coupled, widely tunable by tens of nm in
wavelength via temperature tuning of the PPLN crystal, and
takes advantage of a convenient, collinearly propagating ge-
ometry. Using third-order, type-I quasi-phase matching in a

FIG. 7. Plot of coincidence rate as a function of idler polariza-
tion analyzer angle uI, where at uI=0 the analyzer was set to couple
equal amounts of idler from the two down-converters. sad Signal
polarization analyzer was set at uS=0 spassing equal amounts of
signal light from the two down-convertersd for the singlet output
state f=0 sopen diamondd and the triplet output state f=p ssolid
circled. sbd uS= ±p /4 to pass the output from the single down-
converter pumped from below sopen circled or above ssolid dia-
mondd. Below and above refers to pumping directions as indicated
in Fig. 2.
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2-cm long PPLN crystal, we have obtained a  ber -coupled
polarization-entangled pair  ux of ,16 000/ ss mWd of
532-nm pump power in a bandwidth of 50 GHz. For a band-
width of 50 MHz, our source has a  ux of ,16/ ss mWd.
This number can be scaled up by three orders of magnitude
using a  rst order grating sfactor of 9 improvementd in PPLN
with a better quality grating duty cycle sfactor of 20%d, and
a higher pump power of 100 mW or more. These simple
improvements can be implemented without changing the ex-
perimental con guration and would yield a photonic source
of polarization entanglement suitable for entanglement trans-
fer to atoms via direct atomic excitations which have band-
widths of tens of MHz. The source could be used for testing
long-distance teleportation schemes, in which the entangle-
ment is stored in trapped-atom quantum memories f2g. The
bidirectional pumping con guration in our bulk PPLN sys-
tem can be applied to a PPLN waveguide down-converter,

thereby combining the signi cant ef ciency improvement of
a waveguide con guration with the ease of generating polar-
ization entanglement. Furthermore, the collinear geometry is
suitable for implementing a cavity-enhanced parametric am-
pli er con guration f14g, which should yield polarization-
entangled photons that have bandwidths closely matching
those of atomic excitations. Our source therefore is useful for
a number of quantum information processing tasks such as
long-distance teleportation and quantum cryptography.
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